首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

2.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   

3.
Unmodified β‐cyclodextrin has been directly used to initiate ring‐opening polymerization of ϵ‐caprolactone in the presence of yttrium trisphenolate. Well‐defined cyclodextrin (CD)‐centered star‐shaped poly(ϵ‐caprolactone)s have been successfully synthesized containing definite average numbers of arms (Narm = 4–6) and narrow polydispersity indexes (below 1.10). The number‐average molecular weight ( ) and average molecular weight per arm ( ) are controlled by the feeding molar ratio of monomer to initiator. The prepared star‐PCL with of 2.7 × 103 is in fully amorphous and that with of 13.3 × 103 is crystallized. In addition, the obtained poly(e‐caprolactone) (PCL) stars with various molecular weights have different solubilities in methanol and tetrahydrofuran, which can be applied for further modifications.  相似文献   

4.
The electrochemical oxidation of bromide in the presence of ammonium ion (NH ) was studied by cyclic voltammetry and UV‐vis spectroscopy. The experimental results suggested that the anodically generated bromine (Br2) would be hydrolyzed to hypobromous acid (HBrO) at the pH range of 5–7 and was further disproportionate to hypobromite anion (BrO?) when pH was larger than 7. Both HBrO and BrO? were confirmed to be participated in the following homogeneous chemical reaction with the coexisted ammonium ion. However, HBrO is electroactive whereas BrO is electroinactive at carbon electrode. Based upon the reaction of HBrO with NH , an indirect electrochemical method was proposed for determination of NH with dual‐electrode configuration in phosphate buffer solution (pH 7), where HBrO was produced at a generator electrode and the excess HBrO was subsequently detected at a collector electrode after a reaction with NH in a batch solution or in a micro flow injection analytical (micro‐FIA) system by using an interdigitated array (IDA) Pt microelectrode and a carbon film ring‐disk electrode (CFRDE), respectively. The decreasing of reduction current at the collector electrode was proportional to the concentration NH in both systems, with the detection limit below 3.0 μM. This approach shows the advantage of highly selectivity even in presence of a large amount of coexisted cations, and was successfully applied for the determination of NH in environmental water samples.  相似文献   

5.
The dilution of tert‐butylamine (tBA) with water and subsequent cooling leads to a large series of different crystalline hydrates by an in situ IR laser melting‐zone procedure. The crystal structures were determined for tBA?n H2O, with n=0, , 1, 7 , 7 , 9 , 11, and 17. For the two lower hydrates (n= , 1), one‐ and two‐dimensional hydrogen‐bonded networks are formed, respectively. The higher hydrates (n>1) exhibit a clathrate‐like three‐dimensional water framework with the tBA molecules as part of, or sitting inside, the cages. In all cases, tBA is hydrogen‐bonded to the H2O framework. In the intermediate range (1相似文献   

6.
Several palladium(II) and platinum(II) complexes analogous to oxaliplatin, bearing the enantiomerically pure (1R,2R)‐(?)‐1,2‐diaminocyclohexane (DACH) ligand, of the general formula {MX2[(1R,2R)‐DACH]}, where M = Pd or Pt, X (COO)2, CH2(COO)2, , , {1,1′‐C5H8(CH2COO)2}, [1,1′‐C6H10(CH2COO)2], [1,1′‐(COO)2ferrocene], , , , MeCOO and Me3CCOO, were synthesized. All the complexes prepared were characterized physicochemically and spectroscopically. Some selected complexes were screened in vitro against several tumor cell lines and the results were compared with reference standard drug, oxaliplatin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME) was synthesized by suspension copolymerization and modified by ring‐opening reaction of the pendant epoxy groups with ethylene diamine (EDA). Inverse gas chromatography (IGC) at infinite dilution was applied to determine the thermodynamic interactions of PGME and modified copolymer, PGME‐en. The specific surface areas of the initial and modified copolymer samples were determined by the BET method, from low‐temperature nitrogen adsorption isotherms. The specific retention volumes, V, of 10 organic compounds of different chemical nature and polarity (nonpolar, donor, or acceptor) were determined in the temperature range 333–413 K. The weight fraction activity coefficients of test sorbates, , and Flory–Huggins interaction parameters, , were calculated and discussed in terms of interactions of sorbates with PGME and PGME‐en. Also, the partial molar free energy, , partial molar heat of mixing, , sorption molar free energy, ΔG, sorption enthalpy ΔH, and sorption entropy, ΔS, were calculated. Glass transitions in PGME and PGME‐en, determined from IGC data, were observed in the temperature range 373–393 K and 363–373 K, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2524–2533, 2005  相似文献   

8.
Ab initio calculations at the CCSD(T)/6‐311++G(2d,p)//B3LYP/6‐311++G(d,p) level of theory have been carried out for three prototypical rearrangement processes of organosilicon anion systems. The first two are reactions of enolate ions which involve oxygen–silicon bond formation via three‐ and four‐membered states, respectively. The overall reactions are: The ΔG (reaction) values for the two processes are +175 and +51 kJ mol?1, with maximum barriers (to the highest transition state) of +55 and +159 kJ mol?1, respectively. The third studied process is the following: (CH3O)C(?CH2)Si(CH3)2CH → (CH3)2(C2H5)Si? + CH2CO, a process involving an SNi reaction between ‐CH and CH3O‐ followed by silicon–carbon bond cleavage. The reaction is favourable [ΔG(reaction) = ?39 kJ mol?1] with the barrier for the SNi process being 175 kJ mol?1. The previous experimental and the current theoretical data are complementary and in agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The lamellar coordination polymer [(CuSCN)2(μ‐1,10DT18C6)] (1,10DT18C6 = 1,10‐dithia‐18‐crown‐6), in which staircase‐like CuSCN double chains are bridged by thiacrown ether ligands, may be prepared in two triclinic modifications 1 a and 1 b by reaction of CuSCN with 1,10DT18C6 in respectively benzonitrile or water. Performing the reaction in acetonitrile in the presence of an equimolar quantity of KSCN leads, in contrast, to formation of the K+ ligating 2‐dimensional thiocyanatocuprate(I) net [{Cu2(SCN)3}] of 2 , half of whose Cu(I) atoms are connected by 1,10DT18C6 macrocycles. The potassium cations in [{K(CH3CN)}{Cu2(SCN)3(μ‐1,10DT18C6)}] ( 2 ) are coordinated by all six potential donor atoms of a single thiacrown ether in addition to a thiocyanate S and an acetonitrile N atom. Under similar conditions, reaction of CuI, NaSCN and 1,10DT18C6 affords [{Na(CH3CN)2}{Cu4I4(SCN)(μ‐1,10DT18C6)}] ( 3 ), which contains distorted Cu4I4 cubes as characteristic molecular building units. These are bridged by thiocyanate and thiacrown ether ligands into corrugated Na+ ligating sheets. In the presence of divalent Ba2+ cations, charge compensation requirements lead to formation of discrete [Cu(SCN)3(1,10DT18C6‐κS)]2– anions in [Ba{Cu(SCN)3(1,10DT18C6‐κS)}] ( 4 ).  相似文献   

10.
Macrocyclic and polymeric imines 5,5′ and 6,6′ are obtained in excellent yields by template‐free polycondensation of 1,6‐bis(4‐formylbenzoyloxy)hexane (1) with commercially available 4,4′‐methylene‐bis(cyclohexylamine) (2) and with bis(2‐amino‐2‐methylprop‐1‐yl)adipate dihydrochloride (4), respectively. The degree of macrocyclization during imine synthesis strongly depends on the diamine. Matrix‐assisted laser desorption–ionization time‐of‐flight (MALDI‐TOF) mass spectrometry analysis and gel permeation chromatography (GPC) measurements show that (2) leads to more macrocyclic adducts than (4). The subsequent meta‐chloroperoxybenzoic acid oxidation of polyimines 5,5′ and 6,6′ ( = 1650–11 200 g mol−1, = 3800–27 350 g mol−1) yields the corresponding polyoxaziridines 7,7′ and 8,8′ consisting of macrocyclic and linear polymeric structures ( = 1750–8050 g mol−1, = 3250–15 800 g mol−1). The synthesized polyoxaziridines are relatively stable and storable at room temperature.  相似文献   

11.
Tetrazole (H2CN4) and tetrazolate anion (HCN$_{4}^{-}$) are high‐energy compounds with a five‐membered ring‐type structures, which can be easily synthesized by HCN and HN3 and by HCN and N$_{3}^{-}$, respectively, in an irreversible reaction. The ab initio methods including MP2/6‐31G**, B3LYP/6‐31G**, B3LYP/6‐311+G(2d,p), and CBS/QB3 from Gaussian 98 program are employed to study the thermochemistry and reaction mechanism. The transition states of both HCN + HN3 → H2CN4 and HCN + N$_{3}^{-}$ → HCN$_{4}^{-}$ reaction are investigated, and it is found that the latter reaction is more favored than the former one in view of the chemical kinetics and thermodynamics, thus indicating that tetrazole (H2CN4) and tetrazolate anion (HCN$_{4}^{-}$) are formed more easily in an alkali environment than in other systems. Pentazole (HN5) is an unknown high‐energy compound and has not yet been synthesized. For comparison, HN5 and N$_{5}^{-}$, both which have similar type of synthetic reactions to the above‐mentioned reactions, are studied. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 27–37, 2000  相似文献   

12.
The electrophilic additions of hydroperoxyl (HO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$) and alkylperoxyl (RO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$) radicals to substituted ethenes were studied using the AM1 semiempirical molecular orbital (MO) methods at the self‐consistent field/unrestricted Hartree–Fock (SCF/UHF) level. Reactantlike transition states were predicted for the title additions. The reactivity of an alkylperoxyl radical toward ethenes was found to be decreased as the degree of methyl (Me) substitution on the alkyl group of the radical increased. The relative reactivity and regioselectivity in HO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$ additions to substituted ethenes was suggested to be SOMO (singly occupied)‐HOMO controlled. A good correlation was established between the activation enthalpy $(\Delta H_{f}^{\ast})$ for the studied additions and the Taft polar substituent constants (σ*) of RO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$. The Evans–Polanyi correlation between $\Delta H^{\mbox{\mathversion{bold}$\cdot$}}_{f}$ and $\Delta H^{\circ}_{r}$ was justified and the validity of the Hammond postulate was indicated. The calculated results were compared with the available experimental data. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 761–771, 2000  相似文献   

13.
Iodostannates(II) with Anionic [SnI3] Chains – the Transition from Five to Six‐coordinated SnII The iodostannates (Me4N) [SnI3] ( 1 ), [Et3N–(CH2)4–NEt3] [SnI3]2 ( 2 ), [EtMe2N–(CH2)2–NEtMe2] [SnI3]2 ( 3 ), [Me2HN–(CH2)2–NH–(CH2)2–NMe2H] [SnI3]2 ( 4 ), [Et3N–(CH2)6–NEt3] [SnI3]2 ( 5 ) and [Pr3N–(CH2)4–NPr3]‐ [SnI3]2 · 2 DMF ( 6 ) with the same composition of the anionic [SnI3] chains show differences in the coordination of the SnII central atoms. Whereas the Sn atoms in 1 and 2 are coordinated in an approximately regular octahedral fashion, in compounds 3 – 6 the continuous transition to coordination number five in (Pr4N) [SnI3] ( 7 ) or [Fe(dmf)6] [SnI3]2 ( 8 ) can be observed. Together with the shortening of two or three Sn–I bonds, the bonds in trans position are elongated. Thus weak, long‐range Sn…I interactions complete the distorted octahedral environment of SnI4 groups in 3 and 4 and SnI3 groups in 5 and 6 . Obviously the shape, size and charge of the counterions and the related cation‐anion interactions are responsible for the variants in structure and distortion.  相似文献   

14.
A series of random copolymers and block copolymers containing water‐soluble 4AM and fluorescent VAK are synthesized by NMP. The homopolymerizations of 4AM and VAK and 4AM/VAK random copolymerization are performed in 50 wt% DMF using 10 mol% SG1, resulting in a linear increase in versus conversion, and final polymers with narrow molecular weight distributions ( < 1.4). Reactivity ratios rVAK = 0.64 ± 0.52 and r4AM = 0.86 ± 0.66 are obtained for the 4AM/VAK random copolymerization. In addition, a poly(4AM) macroinitiator is used to initiate a surfactant‐free suspension polymerization of VAK. After 2.5 h, the resulting amphiphilic block copolymer has = 12.6 kg · mol?1, = 1.48, molar composition FVAK = 0.38 with latex particle sizes between 270 and 475 nm.

  相似文献   


15.
The effect of a layer of electrochemically grafted 4‐diazo‐N,N‐diethylaniline (DEA) groups on the electron transfer kinetics of redox systems, displaying fast and slow heterogeneous electron transfer rate constants at edge and basal planes of carbon, was investigated. The properties of the modified electrode were characterized by cyclic voltammetry using four different inorganic redox systems (Fe(CN) , Co(phen) , Ru(NH3) , and IrCl in acidic, neutral, and basic media. Two distinct blocking behaviors and electrostatic effects were observed. More precisely, a strong blocking effect of the grafted layer on Fe(CN) and Co(phen) was found, whereas Ru(NH3) and IrCl showed to be rather unaffected by the presence of the DEA grafted layer.  相似文献   

16.
The dispersive component of the surface‐free energy, , of cellulose acetate butyrate (CAB) has been determined using the net retention volume, VN, of n‐alkanes (C5? C8) probes in the temperature range 323.15–393.15 K. The values decrease nonlinearly with increase in temperature, and the temperature coefficients of are ? 0.32 (mJ/m2K) and ? 0.10 (mJ/m2K) in the range 323.15–353.15 K and 353.15–393.15 K, respectively. This variation in has been attributed to the structural changes that take place on the surface of CAB at ~353.15 K. The specific components of the enthalpy of adsorption, , and entropy of adsorption, , calculated using VN of polar solutes are negative. The values are used to evaluate Lewis acidity constant, Ka, and Lewis basicity constant, Kb, for the CAB surface. The Ka and Kb values are found to be 0.126 and 1.109, respectively, which suggest that the surface is predominantly basic. The Ka and Kb results indicate for the necessary surface modifications of CAB which act as biodegradable adsorbent material. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The irreducible matrices and Clebsch–Gordan coefficients of any crystallographic point group adapted to all possible canonical subgroup chains are calculated ab initio for both single‐valued and double‐valued representations and tabulated with exact values in the form of or and with components labeled by the irrep labels of the group chain in Koster notation. The phases and ordering of the components of irreducible bases for the cubic point groups are properly chosen so that irreducible matrices for all subgroup chains of G=Td, O, Oh obey the associated relations D(G)=D(G)D(G), i=4, 6, and the complex conjugation relation for the group T, D(T)=D(T)*. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 75: 67–80, 1999  相似文献   

18.
《Electroanalysis》2003,15(14):1165-1170
We describe the controlled fabrication of ultrathin multilayer films consisting of tri‐vanadium‐ substituted heteropolytungstate anions (denoted as P2W15V3) and a cationic polymer of quaternized poly (4‐vinylpyridine) partially complexed with osmium bis(2,2′‐bipyridine) (denoted as QPVP‐Os) on the 4‐aminobenzoic acid (4‐ABA) modified glassy carbon electrode (GCE) surface based on layer‐by‐layer assembly. Cyclic voltammetry and UV‐vis absorption spectrometry have been used to easily monitor the thickness and uniformity of thus‐formed multilayer films. The V‐centered redox reaction of P2W15V3 in the multilayer films can effectively catalyze the reduction of BrO and NO . The resulting P2W15V3/QPVP‐Os multilayer film modified electrode behaves as a much promising electrochemical sensor because of the low overpotential for the catalytic reduction of BrO and NO , and the catalytic oxidation of ascorbic acid.  相似文献   

19.
Self‐assembling systems based on ionic complexes of DNA fragments (36 base pairs), bcl‐2 antisense oligonucleotides (octadecamer), oligophosphates (25 phosphate groups) or acrylic oligomers (18 groups of phosphonic acid) with poly(L ‐lysine) (PLL) ( = 130 000 and 88 000) grafted with short poly[N‐(2‐hydroxypropyl)methacrylamide] (PHPMA) chains ( = 4 300 or 8 600) were studied by static and dynamic light scattering methods as systems suitable for gene therapy applications. The graft copolymers (GPLLs) with shorter PHPMA grafts ( = 4 300) provide polyelectrolyte complexes (PECs) with smaller and RH than the corresponding GPLLs with longer grafts ( = 8 600) and the same content of PLL. The lowest aggregation number of 2 was observed for PECs prepared from the GPLL with short grafts and 40 wt.‐% of PLL. The complexes of oligonucleotides and DNA fragments with GPLLs showed quite similar behavior to that with oligophosphates and acrylic oligomer. The complexes prepared from GPLLs containing 40 wt.‐% of PLL and at excess of oligophosphate were stable for at least 48 h under physiological conditions (0.15 M NaCl) and in bovine serum albumin solutions (1 mg · mL?1). Additionally, polyanion exchange reactions of the PECs in contact with poly(styrenesulfonate) and DNA were studied in 0.15 M NaCl solutions. The oligophosphates in complexes were at least partially substituted with high‐molecular‐weight polyanions. The structure of the initial PECs dominated the PEC structure after the exchange reaction.

The dependence of the molecular weight (a) and the hydrodynamic radius RH (b) of complexes of the oligophosphate (OPP) and four graft copolymers (GPLLi, i = 0–3) on the mixing ratio X.  相似文献   


20.
Summary: A novel chitosan derivative with polysarcosine side chains, i.e., chitosan‐graft‐polysarcosine [chitosan‐graft‐poly(N‐methylglycine)], was synthesized by ring‐opening polymerization of sarcosine N‐carboxyanhydride (NCA) with chitosan as a macroinitiator in the presence of carboxylic acids in dimethyl sulfoxide at 27 °C. Degree of substitution ( ) for polysarcosine side chains introduced to chitosan was controlled successfully by the feed amount of the additive nicotinic acid ( = 0.21–0.71). Independent of control, degree of polymerization ( ) for polysarcosine side chains was controlled by adjusting feed ratios of NCA monomer to chitosan ( = 14–43). Kinetic analysis of the propagation of sarcosine NCA was conducted by measuring CO2 evolution. Apparent kp values decreased with increased feed amounts of nicotinic acid, supporting the theory that propagation of NCA in the presence of nicotinic acid proceeds via equilibrium between active amine and dormant ammonium species.

Propagation mechanism of carboxylic acid‐mediated polymerization of sarcosine N‐carboxyanhydride.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号