首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   

2.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

3.
The title complex, [Y2(C6H7)4(C3H7O)2], is a centrosymmetric dimer bridged through the O atoms of the isopropoxide ligands. The Y2O2 unit is planar and the geometry around the eight‐coordinate Y atom is distorted pseudo‐tetrahedral. The Y—O distances are 2.2228 (19) and 2.2432 (19) Å, and the O—Y—O angle is 74.86 (7)°.  相似文献   

4.
In the title compound, [Nd2(C4H4O4)2(C2O4)(H2O)2]n, the flexible succinate anion assumes the gauche conformation and bridges the nine‐coordinate Nd atoms to generate two‐dimensional layers parallel to (010). The coordination polymer layers are linked into a three‐dimensional framework by the rigid oxalate ligands. The oxalate ions are located on a center of inversion.  相似文献   

5.
6.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

7.
Black‐brown needle‐shaped single crystals of [Co2(en)4(O2)(OH)][C4O4]1.5 · 4H2O (en = ethylenediamine) were prepared in aqueous solution at room temperature [space group P$\bar{1}$ (no.2) with a = 800.20(8), b = 1225.48(7), c = 1403.84(9) pm, α = 100.282(5), β = 94.515(7), and γ = 95.596(6)°]. The Co3+ cations [Co(1), Co(2)] are coordinated in an octahedral manner by four nitrogen atoms stemming from the ethylenediamine molecules and two oxygen atoms each from a hydroxo group and a peroxo group, respectively. Both Co3+ coordination polyhedra are connected by a common corner and by the peroxo group leading to the dinuclear [(en)2Co(O2)(OH)Co(en)2]3+ cation. The squarate dianions, not bonded to Co3+, and the [(en)2Co(O2)(OH)Co(en)2]3+ cations are linked by hydrogen bonds forming a three‐dimensional supramolecular network containing water molecules. Magnetic measurements revealed a diamagnetic behavior indicating a low‐spin electron configuration of Co3+. The UV/Vis spectra show two LMCT bands [π*(O22–) → dσ*(Co3+)] at 274 and 368 nm and the d–d transition (1A1g1T1g) at 542 nm. Thermoanalytical investigations in air show that the compound is stable up to 120 °C. Subsequent decomposition processes to cobalt oxide are finished at 460 °C.  相似文献   

8.
The solid‐state structure of the title compound, [Na2Mn2(C32H56N2OSi2)2O2] or [1,8‐C10H6(NSiiPr3)2Mn(μ3‐O)Na(THF)]2, which lies across a crystallographic twofold axis, exhibits a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging between the two MnIII ions and an Na+ ion. Additional coordination is provided to each MnIII centre by a 1,8‐C10H6(NSiiPr3)2 [1,8‐bis(triisopropylsilylamido)naphthalene] ligand and to the Na+ centres by a tetrahydrofuran molecule. The presence of an additional Na...H—C agostic interaction potentially contributes to the distortion around the bridging oxide group.  相似文献   

9.
The title compound is composed of one‐dimensional polymeric {[Er2(C12O12)(H2O)10]·4H2O}n chains containing Er in a slightly distorted antiprismatic eightfold coordination. The benzene­hexa­carboxyl­ate ion is located about an inversion centre. Water mol­ecules of crystallization, linked by hydrogen bonding to water mol­ecules of the rare earth coordination spheres or the carboxyl­ate groups of the organic ligands, fill the space generated by the packing of the separated chains.  相似文献   

10.
11.
The asymmetric unit of the title coordination polymer, [Gd2(C7H4O5S)2(C2O4)(H2O)6]n or [Gd(2‐SB)(ox)0.5(H2O)3]2n (2‐SB is 2‐sulfonatobenzoate and ox is oxalate), (I), consists of one GdIII ion, one 2‐SB anion, three coordinated water molecules and one half of an ox ligand. The ox ligand is located on a crystallographic inversion centre. The GdIII centre shows a distorted tricapped trigonal–prismatic coordination formed by nine O atoms from two 2‐SB anions, one ox ligand and three coordinated water molecules. The carboxylate and sulfonate groups of the 2‐SB anions adopt μ2‐η12 and μ1‐η001 coordination modes to link two GdIII ions, generating a centrosymmetric binuclear [Gd2(2‐SB)2(H2O)6]2− subunit. The ox ligand acts as a bridge, linking the binuclear [Gd2(2‐SB)2(H2O)6]2− subunits into a one‐dimensional chain structure parallel to the b axis. Furthermore, extensive O—H...O hydrogen bonds connect the chains into a three‐dimensional supramolecular architecture.  相似文献   

12.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

13.
Cobalt Complexes with O2 Bridges: The Structure of the Cations μ-Hydroxo-μ-peroxo-bis[bis(ethylenediamine) cobalt (III)]3+and μ-Hydroxo-μ-superoxo-bis [bis (ethylenediamine) cobalt (III)]4+ X-ray structure determinations of one salt of each of the two chemically and structurally closely related dinuclear cobalt cations [(en)2Co · μ(OH, O2) · Co(en)2]3+ 1a and [(en)2Co · μ(OH, O2) · Co(en)2]4+ 1b have been performed. In both cases the cations exist as racemic mixtures of ΔΔ and ΔΔ isomers. The O–O distance in the μ-peroxo cation 1a is 1.465 Å and the Co–O–O–Co torsion angle is 60.7°. The corresponding values for the μ-superoxo cation 1b are 1.339 Å and 22.0°.  相似文献   

14.
4 complexes containing the anion [Co2{NO2(OH)2}(NO2)6]3? are described. The infrared and Raman spectra are reported and discussed.  相似文献   

15.
For charge balance in the title compound, (H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O, it is assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of the starting MnII species. The formula unit of the complex contains a hydroxonium hydrate cation, H5O2+, also known as the Zundel cation, with twofold symmetry. The O...O [2.445 (10) Å] and O...H distances [1.24 (2) Å] in the H5O2+ cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine‐2,6‐dicarboxylate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octahedral. Three intermolecular C=O...π interactions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) Å between carboxylate C=O groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous O—H...O, O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds. Most of the components of the structure are organized into one plane.  相似文献   

16.
This study presents the coordination modes and crystal organization of a calcium–potassium coordination polymer, poly[hexaaquabis(μ4‐4‐carboxybenzenesulfonato‐κ4O1:O1′:O1′′:O4)bis(μ3‐4‐carboxybenzenesulfonato‐κ2O1:O1′)calcium(II)dipotassium(I)], [CaK2(C7H5O5S)4(H2O)6]n, displaying a novel two‐dimensional framework. The potassium ion is seven‐coordinated by four sulfonate and one carboxyl O atom located on five different acid ligands, two of which are unique, and by two symmetry‐independent water O atoms. A pair of close potassium ions share two inversion‐related sulfonate O‐atom sites to form a dimeric K2O12 unit, which is extended into a one‐dimensional array along the a‐axis direction. The six‐coordinate Ca2+ ion occupies a special position () at (0, , ) and is surrounded by four sulfonate O atoms from two inversion‐related pairs of unique acid monoanions and by two O atoms from aqua ligands. The compound displays a layered structure, with K2O12 and CaO6 polyhedra in the layers and aromatic linkers between the layers. The three‐dimensional scaffold is open, with nano‐sized channels along the c axis.  相似文献   

17.
18.
19.
The title compound, [Ti2Cl6(C2H6N)2(C2H7N)2], is a binuclear octahedral complex lying about an inversion centre. There are four different chloride environments, two terminal [Ti—Cl = 2.2847 (5) and 2.3371 (5) Å] and two bridging [Ti—Cl = 2.4414 (5) and 2.6759 (5) Å], with the Ti—Cl distances being strongly influenced by both the ligand trans to the chloride and whether or not the chloride anion is bridging between the two TiIV centres. The compound forms a two‐dimensional network in the solid state, with weak intermolecular C—H...Cl interactions giving rise to a planar network in the (10) plane.  相似文献   

20.
Orange crystals of bis(acetonitrile‐κN)bis[N,N‐bis(diphenylphosphanyl)ethanamine‐κ2P,P′]iron(II) tetrabromidoferrate(II), [Fe(CH3CN)2(C26H25NP2)2][FeBr4], (I), and red crystals of bis(acetonitrile‐κN)bis[N,N‐bis(diphenylphosphanyl)ethanamine‐κ2P,P′]iron(II) μ‐oxido‐bis[tribromidoferrate(III)], [Fe(CH3CN)2(C26H25NP2)2][Fe2Br6O], (II), were obtained from the same solution after prolonged exposure to atmospheric oxygen, resulting in partial oxidation of the [FeBr4]2− anion to the [Br3FeOFeBr3]2− anion. The asymmetric unit of (I) consists of three independent cations, one on a general position and two on inversion centres, with two anions, required to balance the charge, located on general positions. The asymmetric unit of (II) consists of two independent cations and two anions, all on special positions. The geometric parameters within the coordination environments of the cations do not differ significantly, with the major differences being in the orientation of the phenyl rings on the bidentate phosphane ligand. The ethyl substituent in the cation of (II) and the Br atoms in the anions of (II) are disordered. The P—Fe—P bite angles represent the smallest angles reported to date for octahedral FeII complexes containing bidentate phosphine ligands with MeCN in the axial positions, ranging from 70.82 (3) to 70.98 (4)°. The average Fe—Br bond distances of 2.46 (2) and 2.36 (2) Å in the [FeBr4]2− and [Br3FeOFeBr3]2− anions, respectively, illustrate the differences in the Fe oxidation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号