首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

2.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

3.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

4.
The title compound, [HgCl2(C10H8N2)]n, features two‐dimensional [HgCl2(4,4′‐bipy)]n neutral networks (4,4′‐bipy is 4,4′‐bipyridine), based on an octahedral Hg atom coordinated by four μ2‐Cl atoms and two μ2‐4,4′‐bipy ligands in trans positions, yielding a HgCl4N2 octahedron. The structure has mmm symmetry about the Hg atoms, with most of the atoms on at least one mirror plane, but the unsubstituted C atoms of the 4,4′‐bipy rings are disordered across a mirror plane. Photoluminescent investigations reveal that the title compound displays a strong emission in the green region, which probably originates from a ligand‐to‐ligand charge‐transfer transition.  相似文献   

5.
In the chiral polymeric title compound, poly[aqua(4,4′‐bipyridine)[μ3S‐carboxylatomethyl‐N‐(p‐tosyl)‐l ‐cysteinato]manganese(II)], [Mn(C12H13NO6S2)(C10H8N2)(H2O)]n, the MnII ion is coordinated in a distorted octahedral geometry by one water molecule, three carboxylate O atoms from three S‐carboxyatomethyl‐N‐(p‐tosyl)‐l ‐cysteinate (Ts‐cmc) ligands and two N atoms from two 4,4′‐bipyridine molecules. Each Ts‐cmc ligand behaves as a chiral μ3‐linker connecting three MnII ions. The two‐dimensional frameworks thus formed are further connected by 4,4′‐bipyridine ligands into a three‐dimensional homochiral metal–organic framework. This is a rare case of a homochiral metal–organic framework with a flexible chiral ligand as linker, and this result demonstrates the important role of noncovalent interactions in stabilizing such assemblies.  相似文献   

6.
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six‐coordinate in a slightly distorted octahedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl‐2,2′‐dicarboxylate (dpa) dianions, two N atoms from two 4,4′‐bipyridine (bpy) ligands and two water molecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3‐bridge between the two CoII ions. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxylate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong intermolecular hydrogen bonds between the H2dpa solvent molecule and the chiral sheet, which result in a sandwich structure.  相似文献   

7.
In the title polymeric heterometallic compound, {[Cu3Gd(C6H4NO2)3Cl3(H2O)2]·0.5H2O}n, comprising copper(I) and gadolinium(III) cations bridged by nicotinate (nic) ligands and chloride anions, the GdIII centers display a bicapped trigonal prismatic geometry, defined by six carboxylate O atoms and two water molecules. For copper(I), one Cu center is three‐coordinated by three chloride ions and displays a trigonal–planar geometry; the other two Cu centers are four‐coordinated and display a very distorted tetrahedral geometry. The chloride anions act in μ2‐ and μ3‐bridging modes, linking the CuI ions into an infinite chain. The nic ligand exhibits a tridentate coordination mode, with the carboxylate O atoms linking to two GdIII ions and the N atom linking to one CuI ion. Thus, a novel three‐dimensional heterometallic coordination polymer is constructed from Gd–carboxylate subunits and Cu—Cl chains. In addition, intra‐ and intermolecular O—H...O and O—H...Cl hydrogen bonds are also observed within the three‐dimensional structure. Topologically, the framework represents an unusual 3,6‐connected (4.82)3(410.65) net.  相似文献   

8.
The novel title complex, {[Cu3(C8H3NO6)2(OH)2(H2O)6]·2H2O}n, has a one‐dimensional polymeric double chain structure where the three Cu atoms are linked by μ2‐OH and μ2‐H2O groups, and these trinuclear centres are bridged by two 3‐nitrophthalate ligands. The asymmetric unit contains one and a half crystallographically independent Cu atoms (one lying on a centre of inversion), both coordinated by six O atoms and exhibiting distorted octahedral coordination geometries, but with different coordination environments. Each 3‐nitrophthalate ligand connects to three Cu atoms through two O atoms of one carboxylate group and one O atom of the nitro group. The remaining carboxylate group is free and is involved in intrachain hydrogen bonds, reinforcing the chain linkage.  相似文献   

9.
The title compound, [Zn(C8H5O4)2(C10H8N2)2], was obtained by the hydro­thermal reaction of ZnSO4·7H2O with phthalic acid (H2pht) and 4,4′‐bi­pyridine (4,4′‐bipy). Crystallographic analysis shows that it has a one‐dimensional double‐chain structure via hydrogen‐bonding interactions. Each ZnII atom, adopting a distorted tetrahedral geometry, is coordinated by two N atoms from two 4,4′‐bipy ligands, with Zn—N distances of 2.054 (4) and 2.104 (4) Å, and by two O atoms from symmetry‐related Hpht ligands, with Zn—O distances of 1.921 (4) and 2.019 (4) Å.  相似文献   

10.
The title nest‐shaped cluster, [Cu3WIOS3(C10H8N2)2], has been synthesized by the reaction of (NH4)2[WOS3], CuI and 2,2′‐bipyridine (bipy) in dimethyl­formamide under a purified nitro­gen atmosphere. The cluster has a neutral skeleton containing the bipy ligands, and the central W atom is tetra­hedrally coordinated by three S atoms and one O atom. The three Cu atoms are divided into two different kinds. Two Cu atoms adopt distorted tetra­hedral geometry, with each Cu atom coordinated by two S atoms and the two N atoms of a bipy ligand. The other Cu atom adopts a trigonal mode surrounded by two S atoms and one I atom.  相似文献   

11.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

12.
The title compound, [Mn3Fe6(C5H5)6(C6H4O2)6(C10H8N2)(H2O)2]n, consists of two crystallographically unique MnII centers. One is situated on an inversion center and is octa­hedrally coordinated by two N atoms from two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands and four O atoms, two from different bridging ferrocenecarboxyl­ate (μ2‐FcCOO; Fc is ferrocene) units and two from aqua ligands. The two halves of each 4,4′‐bipy ligand are related by a center of symmetry. The second MnII center is in a strongly distorted tetra­gonal–pyramidal geometry, coordinated by five O atoms, three from three μ2‐FcCOO units and two from a fourth, chelating, η2‐FcCOO unit. The FcCOO units function as bridging ligands to adjacent MnII centers, leading to the formation of linear ⋯Mn1Mn2Mn2Mn1⋯ chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, resulting in a two‐dimensional layered polymer.  相似文献   

13.
The title compound, [ZnI2(bipy)]n (bipy is 4,4′‐bipyridine, C10H8N2), has been prepared by the hydro­thermal reaction of ZnI2 and bipy at 433 K. Each Zn atom is coordinated by two N atoms from two different bipy ligands and by two I atoms in a distorted tetra­hedral geometry, with Zn—N distances ranging from 2.068 (7) to 2.101 (8) Å and Zn—I distances ranging from 2.5471 (13) to 2.5673 (13) Å. The mol­ecular structure features a zigzag polymeric chain. Face‐to‐face π–π stacking inter­actions between adjacent bipy ligands stabilize the structure.  相似文献   

14.
In the title centrosymmetric binuclear complex, [Cu2(C14H11N2O3)2(H2O)2](NO3)2, the two metal centres are bridged by the phenolate O atoms of the ligand, forming a Cu2O2 quadrangle. Each Cu atom has a distorted square‐pyramidal geometry, with the basal donor atoms coming from the O,N,O′‐tridentate ligand and a symmetry‐related phenolate O atom. The more weakly bound apical donor O atom is supplied by a coordinated water molecule. When a further weak Cu...O interaction with the 4‐hydroxy O atom of a neighbouring cation is considered, the extended coordination sphere of the Cu atom can be described as distorted octahedral. This interaction leads to two‐dimensional layers, which extend parallel to the (100) direction. The two‐dimensional polymeric structure contrasts with other reported structures involving salicylaldehyde benzoylhydrazone ligands, which are usually discrete mono‐ or dinuclear Cu complexes. The nitrate anions are involved in a three‐dimensional hydrogen‐bonding network, featuring intermolecular N—H...O and O—H...O hydrogen bonds.  相似文献   

15.
In the title two‐dimensional coordination polymer, [Mn(1,4‐BDOA)(4,4‐bipy)(H2O)2]n [1,4‐BDOA2− is the p‐phenyl­ene­dioxy­di­acetate dianion (C10H8O6) and 4,4‐bipy is 4,4‐bi­pyridine (C10H8N2)], each MnII atom displays octahedral coordination by two O atoms of the 1,4‐BDOA2− groups, two N atoms of the 4,4‐bipy ligands and two solvent water mol­ecules. The MnII atom, 4,4‐bipy ligand and 1,4‐BDOA2− group occupy different inversion centres. Adjacent MnII atoms are bridged by 1,4‐BDOA2− groups and 4,4‐bipy ligands, forming a two‐dimensional network with Mn⋯Mn separations of 11.592 (2) and 11.699 (2) Å. Hydro­gen bonds from a water O—H group link the layers in the third dimension.  相似文献   

16.
The title complex, [Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2O, possesses an unusual inversion‐symmetric tetranuclear copper framework, with each CuII atom displaying a square‐pyramidal geometry and one additional long Cu...O contact. The four piperidine ligands are terminal, one at each CuII atom, and the two hydroxide ligands are triply bridging. The six acetate ligands exhibit two distinct coordination modes, namely as two monodentate acetates and four bridging acetates that bridge the two inequivalent copper centres. The noncoordinating acetate O atom is involved in intramolecular hydrogen bonding with H atoms from the hydroxide and one piperidine ligand. In addition, extensive intermolecular hydrogen bonding involving the solvent water molecules is observed.  相似文献   

17.
The reaction of 4,4′‐bipyridine with copper acetate in the presence of 4‐nitrophenol led to the formation of the title compound, {[Cu(CH3COO)2(C10H8N2)]·C6H5NO3·2H2O}n. The complex forms a double‐stranded ladder‐like coordination polymer extending along the b axis. The double‐stranded polymers are separated by 4‐nitrophenol and water solvent molecules. The two CuII centres of the centrosymmetric Cu2O2 ladder rungs have square‐pyramidal coordination environments, which are formed by two acetate O atoms and two 4,4′‐bipyridine N atoms in the basal plane and another acetate O atom at the apex. The ladder‐like double strands are separated from each other by one unit‐cell length along the c axis, and are connected by the water and 4‐nitrophenol molecules through a series of O—H...O and C—H...O hydrogen‐bonding interactions and two unique intermolecular π–π interactions.  相似文献   

18.
In the polymeric title compound, [CuI(C10H8N4)]n, the CuI atom is in a four‐coordinated tetrahedral geometry, formed by two I atoms and two pyridine N atoms from two different 4,4′‐(diazenediyl)dipyridine (4,4′‐azpy) ligands. Two μ2‐I atoms link two CuI atoms to form a planar rhomboid [Cu2I2] cluster located on an inversion centre, where the distance between two CuI atoms is 2.7781 (15) Å and the Cu—I bond lengths are 2.6290 (13) and 2.7495 (15) Å. The bridging 4,4′‐azpy ligands connect the [Cu2I2] clusters into a two‐dimensional (2‐D) double‐layered grid‐like network [parallel to the (10) plane], with a (4,4)‐connected topology. Two 2‐D grid‐like networks interweave each other by long 4,4′‐azpy bridging ligands to form a dense 2‐D double‐layered network. To the best of our knowledge, this interwoven 2‐D→2‐D network is observed for the first time in [Cu2I2]–organic compounds.  相似文献   

19.
Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self‐assembly of Cd(NO3)2·4H2O, 1,2‐bis(pyridin‐4‐yl)ethene (bpe) and 4‐iodobenzoic acid (4‐IBA). Each CdII atom is seven‐coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4‐IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdII centres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two‐dimensional net. Topologically, taking the CdII atoms as nodes and the μ‐aqua and μ‐bpe ligands as linkers, the two‐dimensional structure can be simplified as a (6,3) network.  相似文献   

20.
The title compound, [Cu4(C7H4ClO2)4(C6H6NO)4], consists of isolated tetranuclear clusters, where the Cu2+ cations are five‐ and sixfold coordinated by O atoms from the 4‐chlorobenzoate anions and by pyridine N and methanolate O atoms from bidentate 2‐pyridylmethanolate ligands. While three Cu atoms are six‐coordinated by an NO5 donor set forming distorted octahedra, the fourth Cu atom is five‐coordinated by an NO4 donor set forming a distorted tetragonal–pyramidal coordination around the Cu atom. The nucleus is a deformed cubane‐like Cu4O4 structure, with Cu...Cu distances in the range 3.0266 (11)–3.5144 (13) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号