首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

2.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   

4.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

5.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

6.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Free radical polymerization of N‐isopropylacrylamide (NIPAAm) and crosslinker solutions, which were fulfilled in silica particles with an interpenetrated and nanometer‐sized porous structure (a diameter of 3 mm and mean pore sizes of 15, 30, and 50 nm), fabricated hybrids of organic hydrogels and inorganic silica. Differential scanning calorimetric analyses of the hybrids revealed that silica components affected the thermoresponsive properties of polyNIPAAm hydrogels. Porous polyNIPAAm hydrogels were prepared by the subsequent acid treatment of the hybrids to remove silica. Transmission Fourier transformed infrared spectra indicated the selective extraction of silica. Scanning electron microscopic observation of the hydrogels confirmed the porous structure. The deswelling rate of porous hydrogels was 7 times larger than that of conventional hydrogels and increased with increasing the pore size of silica used. However, the swelling was not affected by the pore formation. The thermoresponsiveness of porous polyNIPAAm hydrogels could be regulated by the pore size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3542–3547, 2002  相似文献   

8.
A novel and sensitive electrochemiluminescence (ECL) method for ethanol biosensor was developed by co‐immobilizing the enzyme and ECL reagent Ru(bpy)32+ on the poly‐(3,4‐ethylene dioxythiophene) and polystyrene sulfonate functionalized graphene (PEDOT‐PSS‐G) nanocomposite film. Positively charged Ru(bpy)32+ could be immobilized effectively on the electrode surface with the negatively charged PSS and graphene, which provided a stable ECL platform for further modification with the enzyme. Moreover, the introduction of PEDOT and graphene can be acted as a conducting pathway to accelerate the electron transfer due to the high conductivity. Such biosensor combined enzymatic selectivity with the amplification of PEDOT‐PSS‐G performed well with a wide linear range, high sensitivity and good stability. The sensing platform was successfully applied to determine the amounts of alcohol in real samples.  相似文献   

9.
To avoid the harmful effects of metallic residues in poly(1,4‐dioxan‐2‐one) (PPDO) for medical applications, the enzymatic polymerization of 1,4‐dioxan‐2‐one (PDO) was carried out at 60 °C for 15 h with 5 wt % immobilized lipase CA. The lipase CA, derived from Candida antarctica, exhibited especially high catalytic activity. The highest weight‐average molecular weight (Mw = 41,000) was obtained. The PDO polymerization by the lipase CA occurred because of effective enzyme catalysis. The water component appeared to act not only as a substrate of the initiation process but also as a chain cleavage agent. A slight amount of water enhanced the polymerization, but excess water depressed the polymerization. PPDO prepared by enzyme‐catalyzed polymerization is a metal‐free polyester useful for medical applications. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1560–1567, 2000  相似文献   

10.
A thin alumina‐hydrotalcite (Al‐HT) film was fabricated from the synthesized boehmite and HT sol samples. The sols were a Newtonian fluid within 12 h of the sol synthesis and pseudo‐plastic flow thereon. Co‐precipitated HT demonstrated poorly crystallized periclase and spinel structures and apparent doublet peak of hydrotalcite at 2θ = 39–44°, indicative of a disordered structure. The heated Al‐HT sample demonstrated highly amorphous structure with single hydrotalcite peak but barely observed γ‐alumina and γ‐boehmite phases. The exfoliation of the spinel, gibbsite and periclase in the Al‐HT was caused by the intercalation of boehmite into the HT layers that impeded the formation of the oxides phases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We present a novel approach to the fabrication of advanced polymeric nanocomposite hydrogels from polyacrylamide (PAAm) by incorporation of graphene‐silver‐polyethylenedioxythiophene‐polystyrene sulfonate (rGO‐Ag‐PEDOT/PSS) by photopolymerization method. Infrared spectroscopy was employed to characterize the structure of the hydrogels. The internal network structure of nanocomposite hydrogels was investigated by scanning electron microscope. Swelling, deswelling, and mechanical properties of the hydrogels were investigated. The compressive strength of nanocomposite hydrogels reaches maximum of 1.71 MPa when the ratio of rGO‐Ag‐PEDOT/PSS to PAAm was 0.3 wt%, which is 1.57 times higher than that of PAAm hydrogels (1.09 MPa). The electrical conductivity of the PAAm‐rGO‐Ag‐PEDOT/PSS hydrogel was found to be 3.91 × 10?5 S cm?1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

13.
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884  相似文献   

14.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

15.
A well‐defined amphiphilic graft copolymer, poly(6‐methyl‐1,2‐heptadien‐4‐ol)‐g‐poly(2‐(dimethylamino)ethyl methacrylate) (PMHDO‐g‐PDMAEMA), has been synthesized by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. PMHDO backbone containing double bonds and pendant hydroxyls was first prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol (MHDO) followed by treating the pendant hydroxyls with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. SET‐LRP of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) was performed in THF/H2O using PMHDO‐Cl as macroinitiator and CuCl/Me6TREN as catalytic system to afford the well‐defined PMHDO‐g‐PDMAEMA graft copolymer with a narrow molecular weight distribution (Mw/Mn = 1.28). The grafting density was as high as 92%. The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the micellar morphology was preliminarily explored by transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
4‐Hydroxythiophenol (HTP) grafted poly(styrene‐b‐acrylic acid) (PS‐b‐PAA) block copolymers (BCPs) (PS‐b‐PAA‐g‐HTP) was synthesized using the esterification reaction between the carboxyl groups and hydroxyl groups. Self‐assembly behavior of the graft copolymer in 1,4‐dioxane/water was investigated. Assemblies of different morphologies, porous, and bowl‐shaped structures, could be easily prepared. A possible mechanism for the formation of the porous and bowl‐shaped structures was discussed. The present study showed a facile method for the preparation of functionalized PS‐b‐PAA BCPs, which could easily self‐assembly into novel structures in aqueous solution. These assemblies may be used to generate new functional materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1551–1557  相似文献   

17.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

18.
A novel one‐step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD)/glycidyl methacrylate (GMA)/N‐isopropylacrylamide (NIPAM) system. From GMA and HP‐β‐CD, HP‐β‐CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV‐vis spectroscopies. GMA in the form of HP‐β‐CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM‐CD‐GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature‐sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature‐sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring‐opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193–2201, 2008  相似文献   

19.
The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross‐linkers, can be prepared by dual‐enzyme‐triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual‐enzyme‐triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self‐immobilized HRP‐GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.  相似文献   

20.
A well‐defined amphiphilic graft copolymer, consisting of hydrophobic polyallene‐based backbone and hydrophilic poly(N‐isopropylacrylamide) (PNIPAM) side chains, was prepared by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. First, the double‐bond‐containing backbone was prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). Next, the pendant hydroxyls in every repeating unit of poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer were treated with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, PNIPAM side chains were grown from PMHDO backbone via SET‐LRP of N‐isopropylacrylamide initiated by PMHDO‐Cl macroinitiator in N,N‐dimethylformamide/2‐propanol using copper(I) chloride/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford PMHDO‐g‐PNIPAM graft copolymers with a narrow molecular weight distribution (Mw/Mn = 1.19). The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the effects of pH and salinity on the cmc of PMHDO‐g‐PNIPAM were also investigated. The micellar morphology was found to be spheres using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号