首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The pendent‐arm macrocyclic hexa­amine trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine (L) may coordinate in tetra‐, penta‐ or hexa­dentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo‐octa­hedral cobalt(III) complexes of L, namely sodium trans‐cyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)3 or Na{trans‐[CoL(CN)]}(ClO4)3, (I), where L is coordinated as a penta­dentate ligand, and trans‐dicyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine)cobalt(III) trans‐dicyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diaminium)cobalt(III) tetra­perchlorate tetra­hydrate, [Co(CN)2(C14H32N6)][Co(CN)2(C14H30N6)](ClO4)4·4H2O or trans‐[CoL(CN)2]trans‐[Co(H2L)(CN)2](ClO4)4·4H2O, (II), where the ligand binds in a tetra­dentate mode, with the remaining coordination sites being filled by C‐­bound cyano ligands. In (I), the secondary amine Co—N bond lengths lie within the range 1.944 (3)–1.969 (3) Å, while the trans influence of the cyano ligand lengthens the Co—N bond length of the coordinated primary amine [Co—N = 1.986 (3) Å]. The Co—CN bond length is 1.899 (3) Å. The complex cations in (II) are each located on centres of symmetry. The Co—N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)–1.982 (3) Å]. The two independent Co—CN bond lengths are similar [1.918 (4) and 1.926 (4) Å] but significantly longer than in the structure of (I), again a consequence of the trans influence of each cyano ligand.  相似文献   

2.
The crystal structures of a pair of closely related macrocyclic cyano‐ and hydroxopenta­amine­cobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2·H2O and [Co(OH)(C11H27N5)](ClO4)2, exhibit similar conformations, significant differences in the Co—N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen‐bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen‐bonding motifs involving the anion O atoms and the N—H and O—H donors.  相似文献   

3.
The ligand 1,1,3,3-tetramethylbutylisocyanide, CNCMe2CH2CMe3, i.e. t-octylisocyanide, with Co(ClO4)2 · 6H2O or Co(BF4)2 · 6H2O in ethanol, produces pentakis(alkylisocyanide)cobalt(II) complexes, [Co(CNC8H17-t)5](ClO4)2 (1) and [Co(CNC8H17-t)5](BF4)2 · 2.0H2O (2). These Co(II) complexes undergo reduction/substitution upon reaction with trialkylphosphine ligands to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2]ClO4 (3), [Co(CNC8H17-t)3{P(C4H9-n)3}2]BF4 (4), and [Co(CNC8H17-t)3{P(C3H7-n)3}2]ClO4 (5). Complex 3 is oxidized with AgClO4 to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2](ClO4)2 (6). Complex 1 yields [Co(CNC8H17-t)4py2](ClO4)2 (7) upon dissolving in pyridine. Reactions with triarylphosphine and triphenylarsine ligands were unsatisfactory. The chemistry of 1 and 2 is therefore more similar to that of Co(II) complexes with CNCMe3 than with CNCHMe2, other alkylisocyanides, or arylisocyanides, but shows some behavior dissimilar to any known Co(II) complexes of alkylisocyanides or arylisocyanides. Infrared and electronic spectra, magnetic susceptibility, molar conductivities, and cyclic voltammetry are reported and compared with known complexes. 1H, 13C, and 31P NMR data were also measured for the diamagnetic complexes 3, 4, and 5.  相似文献   

4.
New Co(II), Ni(II), and Cu(II) complexes with 4-(3-hydroxyphenyl)-1,2,4-triazole (L) with the compositions [Co3L6(H2O)5(C2H5OH)](NO3)6 · 2H2O · C2H5OH (I), [Ni3L6(H2O)6](NO3)6 · 2H2O (II), and [M3L6(H2O)6](ClO4)6 · nH2O (M = Co2+, n = 2 (III); Ni2+, n = 2 (IV); Cu2+, n = 0 (V)) are synthesized. The complexes are studied by X-ray structure analysis, X-ray diffraction analysis, UV and IR spectroscopy, and the statistical magnetic susceptibility method. All compounds have the linear trinuclear structure. Ligand L is coordinated to the metal ions by the N(1) and N(2) atoms of the heterocycle according to the bidentate bridging mode. In all compounds the coordination polyhedron of the metal atom is a distorted octahedron. The molecular and crystal structures of compound I, [Co3L6(H2O)6](ClO4)6 · 8C2H5OH (IIIa), and [Ni3L6(H2O)6](ClO4)6 · 8C2H5OH (IVa) are determined.  相似文献   

5.
The complexes [Co(CNCMe3)3{P(C6H4NMe2-p)3}2](ClO4)2 and [Co(CNCMe3)3{P(C6H4NMe2 -p)3}2]ClO4 are reported. The Co(II) complex, formed by reaction of excess triarylphos-phine with the alkylisocyanide Co(II) complex, is stable and the favoured product. The Co(I) complex, formed by hydrazine reduction of the Co(II) complex, has limited stability in solution, readily oxidizing to the Co(II) species. Upon prolonged irradiation of the Co(II) complex in acetone, [Co{OP(C6H4NMe2-p)3}4](ClO4)2 is produced.  相似文献   

6.
The title compound, [Cu(C4H12N2)2(C3H6O)2](ClO4)2, is the first structurally characterized CuII complex having acetone as axial ligands. The complex adopts an elongated octahedral trans‐[CuN4O2] coordination geometry, with the Cu atom having 222 site symmetry. The axial Cu—O(acetone) and in‐plane Cu—N bond lengths are 2.507 (5) and 2.041 (3) Å, respectively.  相似文献   

7.
The structure of the title compound, [Cu2(C12H24N4O2)(C3H4N2)2(CH4O)2](ClO4)2 or [Cu2(dmoxpn)(HIm)2(CH3OH)2](ClO4)2, where dmoxpn is the dianion of N,N′‐bis­[3‐(dimethyl­amino)prop­yl]oxamide and HIm is imidazole, consists of a centrosymmetric trans‐oxamidate‐bridged copper(II) binuclear cation, having an inversion centre at the mid‐point of the central C—C bond, and two perchlorate anions. The CuII atom has square‐pyramidal coordination geometry involving two N atoms and an O atom from the dmoxpn ligand, an N atom from an imidazole ring, and an O atom from a methanol mol­ecule. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and imidazole π–π stacking inter­actions to form a three‐dimensional supra­molecular array.  相似文献   

8.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

9.
New complexes of Co(II), Ni(II), and Cu(II) nitrates, chlorides, and perchlorates with 4-(4-hydroxyphenyl)-1,2,4-triazole (L) were obtained and examined by single-crystal X-ray diffraction, X-ray powder diffraction, and electronic absorption and IR spectroscopy. The cations of all the complexes have linear trinuclear structures. Ligand L is coordinated to the metal ions in a bidentate bridging fashion through the N(1) and N(2) atoms of the heterocycle. The coordination polyhedron of the metal atoms is a distorted octahedron. The molecular and crystal structures of the complexes [Co3L6(H2O)6](ClO4)6 · 3C2H5OH · 3.75H2O and [M3L6(H2O)6](ClO4)6 · 6H2O (M = Cu2+ and Ni2+) were determined.  相似文献   

10.
The crystallization behavior of the title compound, [Co(C2H8N2)3](C2O4)(ClO4)·2H2O, has been studied in order to evaluate the effect of the counter‐anion on the crystalline structures of [Co(en)3](C2O4X (en = ethyl­enedi­amine). Two‐dimensional intermolecular hydrogen‐bonding networks are formed between the amine protons of the [Co(en)3]3+ cations and the O atoms of the oxalate anions. Perchlorate and water mol­ecules fill in the channels between the two‐dimensional networks and form hydrogen‐bonding interactions with the two‐dimensional layers, thus constructing a three‐dimensional hydrogen‐bonding network.  相似文献   

11.
The crystal structure of the title complex, [Cu(C7H8N4)2(H2O)2](ClO4)2, consists of a discrete centrosymmetric [Cu(C7H8N4)2(H2O)2]2+ cation and two perchlorate anions. The CuII centre is six‐coordinated by four N donors from the two pyrazole rings [Cu—N 1.998 (2) and 2.032 (3) Å] and two O atoms from the water mol­ecules occupying the apical sites [Cu—O 2.459 (3) Å]. The coordination geometry of the complex can be described as octahedral. There is a unique three‐dimensional network in which the perchlorate units are linked by a combination of strong O—H?O and weak C—H?O hydrogen bonds.  相似文献   

12.
The hydrothermal reaction of 2‐(quinolin‐8‐yloxy)acetonitrile and Cd(ClO4)2 yielded the noncentrosymmetric coordination complex tetrakis[μ‐2‐(quinolin‐8‐yloxy)acetato]tetrakis[μ‐2‐(quinolin‐8‐yloxy)acetonitrile]tetracadmium tetrakis(perchlorate) dihydrate, [Cd4(C11H8NO3)4(C11H8N2O)4](ClO4)4·2H2O. The local coordination environment around the CdII cation can be best described as a capped octahedron defined by two N atoms and five O atoms from three ligands. The CdII cations are linked by the ligands with Cd—O—Cd and Cd—O—C—C—O—Cd bridges, forming tetranuclear units, there being two independent tertranuclear units in the structure. The fourfold rotoinversion centre sits at the centre of each Cd4 core. The two perchlorate anions in the asymmetric unit are linked by the water molecule through O—H...O hydrogen bonds.  相似文献   

13.
Structures and spectroscopic characterization of the divalent complexes cis‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II) dichloromethane 0.771‐solvate, [FeBr2(C9H9N)4]·0.771CH2Cl2 or cis‐FeBr2(CNXyl)4·0.771CH2Cl2 (Xyl = 2,6‐dimethylphenyl), trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II), [FeBr2(C9H9N)4] or trans‐FeBr2(CNXyl)4, trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)cobalt(II), [CoBr2(C9H9N)4] or trans‐CoBr2(CNXyl)4, and trans‐dibromidobis(2,6‐dimethylphenyl isocyanide)nickel(II), [NiBr2(C9H9N)2] or trans‐NiBr2(CNXyl)2, are presented. Additionally, crystals grown from a cold diethyl ether solution of zero‐valent Fe(CNXyl)5 produced a structure containing a cocrystallization of mononuclear Fe(CNXyl)5 and the previously unknown dinuclear [Fe(CNXyl)3]22‐CNXyl)3, namely pentakis(2,6‐dimethylphenyl isocyanide)iron(0) tris(μ2‐2,6‐dimethylphenyl isocyanide)bis[tris(2,6‐dimethylphenyl isocyanide)iron(0)], [Fe(C9H9N)5][Fe2(C9H9N)9]. The (M)C—N—C(Xyl) angles of the isocyanide ligand are nearly linear for the metals in the +2 oxidation state, for which the ligands function essentially as pure donors. The νCN stretching frequencies for these divalent metal isocyanides are at or above that of the free ligand. Relative to FeII, in the structure containing iron in the formally zero‐valent oxidation state, the Fe—C bond lengths have shortened, the C[triple‐bond]N bond lengths have elongated, the (M)C—N—C(Xyl) angles of the terminal CNXyl ligands are more bent, and the νCN stretching frequencies have shifted to lower energies, all indicative of substantial M(dπ)→π* backbonding.  相似文献   

14.
The title compound, [Ni2(C8H4O4)(C10H24N4)2(H2O)2](ClO4)2, contains two independent octahedral NiII centres with trans‐NiN4O2 chromophores. The bridging benzene­dicarboxyl­ate ligand is bonded to the two Ni atoms, each via one O atom of each carboxyl­ate, while the other O atom participates in an intramolecular N—H?O hydrogen bond, forming an S(6) motif. The cations are linked to the perchlorate anions via O—H?O and N—H?O hydrogen bonds [O?O 2.904 (6) and 2.898 (6) Å; O—H?O 158 (6) and 165 (6)°; N?O 3.175 (7) and 3.116 (7) Å; N—H?O 168 and 166°] to form molecular ladders. These ladders are linked by further O—H?O and N—H?O hydrogen bonds [O?O 2.717 (6) and 2.730 (5) Å; O—H?O 170 (4) and 163 (6)°; N?O 3.373 (7) and 3.253 (7) Å; N—H?O 163 and 167°] to form a continuous three‐dimensional framework. The perchlorate anions both participate in three hydrogen bonds, and both are thus fully ordered.  相似文献   

15.
The title complex, [μ‐2,2′‐(1,4‐butane­diyl)di‐1H‐benzimidazole‐κ2N3:N3′]bis{[2,2′‐(1,4‐butane­diyl)di‐1H‐benzimidazole‐κ2N3,N3′](nitrato‐κO)cobalt(II)} dinitrate ethanol disolvate, [Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6O, was obtained from self‐assembly of cobalt(II) nitrate with 2,2′‐(1,4‐butane­diyl)dibenzimidazole (L). The complex molecule lies about an inversion centre and the flexible L ligands act in both bridging and chelating modes to form a dinuclear complex with unanticipated nine‐membered chelate rings. The unique uncoordinated nitrate anion is linked to the cation by pairs of N—H⋯O hydrogen bonds, which determine the overall cation conformation. Cation–anion sets are then linked by a further N—H⋯O hydrogen bond to generate a chain along [010]. Chains are linked by C—H⋯O hydrogen bonds to form sheets in the (100) plane.  相似文献   

16.
The title compound, [H2bipy](ClO4)2 or C10H10N22+·2ClO4?, was obtained at the interface between an organic (2,2′‐bi­pyridine in methanol) and an aqueous phase (perchloric acid in water). The compound crystallizes in space group P and comprises discrete diprotonated trans‐bipyridinium cations, [H2bipy]2+, and ClO4? anions. The cations and anions are connected through N—H?O and C—H?O hydrogen bonds [distances N?O 2.817 (4) and 2.852 (4) Å, and C?O 3.225 (6)–3.412 (5)Å]. The C—C bond distance between the two rings is 1.452 (5) Å. The bipyridinium cation has a trans conformation and the N—C—C—N torsion angle is 152.0 (3)°.  相似文献   

17.
In the title compound, [Co(C5H3N2O4)2(H2O)2]·C10H8N2, the Co atom is trans‐coordinated by two pairs of N and O atoms from two monoanionic 4,5‐di­carboxy­imidazole ligands, and by two O atoms from two coordinated water mol­ecules, in a distorted octahedral geometry. The 4,4′‐bi­pyridine solvent molecule is not involved in coordination but is linked by an N—H⋯N hydrogen bond to the neutral [Co(C5H3N2O4)2(H2O)2] mol­ecule. Both mol­ecules are located on inversion centers. The crystal packing is stabilized by N—H⋯N and O—H⋯O hydrogen bonds, which produce a three‐dimensional hydrogen‐bonded network. Offset π–π stacking interactions between the pyridine rings of adjacent 4,4′‐bi­pyridine molecules were observed, with a face‐to‐face distance of 3.345 (1) Å.  相似文献   

18.
The title complex, μ‐octane‐1,8‐dioato‐bis[bis(3‐aminopyridine)chloro(methanol)cobalt(II)], [Co2(C8H12O4)Cl2(C5H6N2)4(CH4O)2], is located on a crystallographic centre of inversion. The coordination around each of the Co centres is distorted octa­hedral, involving two N, three O and one Cl atom. Discrete dimers are connected in a three‐dimensional arrangement through N—H⋯O, N—H⋯Cl and O—H⋯O hydrogen‐bond inter­actions.  相似文献   

19.
Phosphate esters provide a rigid and stable polymeric backbone in nucleic acids. Metal complexes with phosphate ester groups have been synthesized as structural and spectroscopic models of phosphate‐containing enzymes. Dinucleating ligands are used extensively to synthesize model complexes since they provide the support required to stabilize such complexes. The crystal structures of two dinuclear CoII complexes, namely bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C19H19N3O)2](ClO4)2, and bis(μ‐diphenyl phosphato‐κ2O :O ′)bis({N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine‐κ4N ,N ′,N ′′,O }cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C21H18N4)2](ClO4)2, with tetradentate 2‐methoxy‐N ,N‐bis[(pyridin‐2‐yl)methyl]aniline (L 1) and N ,N‐bis[(pyridin‐2‐yl)methyl]quinolin‐8‐amine (L 2) ligands are reported. The complexes have similar structures, with distorted octahedral geometries around the metal centres. Both are centrosymmetric (Z ′ = 0.5), with the CoII centres doubly bridged by diphenyl phosphate ester groups. A number of aromatic–aromatic interactions are present and differ between the two complexes as the anisole group in L 1 is replaced by a quinoline group in L 2. A detailed study of these interactions is presented.  相似文献   

20.
Complexes of the type [Co(CO)n(P)5?n]ClO4, [CoH2(P)4]ClO4, [CoH(P)5](ClO4)2 and [CoHX(F)4]ClO4 (P = secondary or tertiary phosphine) have been prepared from Co(ClO4)2·6 H2O and phosphine in isopropyl alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号