首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

2.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

3.
The title compound, diaqua‐1κO,3κO‐di‐μ‐hydroxido‐1:2κ2O:O,2:3κ2O:O‐di‐μ‐methacrylato‐1:2κ2O:O′,2:3κ2O:O′‐bis(1,10‐phenanthroline)‐1κ2N,N′;3κ2N,N′‐tricopper(II) dinitrate dihydrate, [Cu3(C4H5O2)2(OH)2(C12H8N2)2(H2O)2](NO3)2·2H2O, has the central Cu atom on an inversion centre. The three CuII atoms are in a linear arrangement linked by methacrylate and hydroxide groups. The coordination environments of the CuII ions are five‐coordinated distorted square‐pyramidal for the outer Cu atoms and four‐coordinated square‐planar for the central Cu atom. All nitrate ions, hydroxide groups and water molecules are linked by hydrogen bonds, forming a linear structure. The complex exhibits ferromagnetic exchange coupling, which is helpful in elucidating magnetic interactions between copper ions and other metallic ions in heteronuclear complexes.  相似文献   

4.
In the title compound, [Cu(C8H4O5)(C5H5N)2]n or [Cu(OH‐BDC)(py)2]n (where OH‐H2BDC is 5‐hydroxy­isophthalic acid and py is pyridine), the Cu atoms are coordinated by two N atoms from the pyridine ligands and by three O atoms from hydroxy­isophthalate ligands in a highly distorted triangular bipyramidal environment, with Cu—O distances in the range 1.941 (4)–2.225 (5) Å and Cu—N distances of 2.014 (6) and 2.046 (6) Å. The [Cu(OH‐BDC)]n two‐dimensional network is built up from interlocking 22‐, 15‐ and eight‐membered rings via sharing of Cu atoms and O—H⋯O hydrogen bonds. Consolidation of the packing structure is achieved by edge‐ or point‐to‐face C—H⋯π interactions and offset or slipped π–π stacking interactions.  相似文献   

5.
In the title compound, μ‐3,4′‐bi‐1,2,4‐triazole‐di‐μ‐chloro‐copper(II) monohydrate, {[CuCl2(C4H4N6)]·H2O}n, the Cu atom is located in a distorted octahedron consisting of two N atoms and four Cl atoms. The structural unit is an infinite chain in which octahedral groups, connected by shared edges, are also linked by bitriazole mol­ecules. The bitriazole ligand, the Cu atom and the water O atom all lie on independent twofold axes. The structure is held together by hydrogen bonds between the water mol­ecules and the non‐coordinated N atoms of the ligand, and by van der Waals forces.  相似文献   

6.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

7.
Abstract

The compounds [Cu(oxpn)] (1), [(bpy)(H2O)Cu(μ-cis-oxpn)Cu(H2O)] · 2NO3 · 2H2O (2) and [(Him)(NO3)Cu(μ-trans-oxpn)Cu(Him)(NO3)] (3), where oxpn is the dianion of N,N′-bis(3-aminopropyl)oxamide, bpy is bipyridine and Him is imidazole, were prepared and characterized by elemental analysis and IR spectra. Complex (2) was also studied by thermochemical analysis and its structure determined by X-ray crystallography. The structure of complex (2) consists of binuclear copper(II) molecules in which the copper(II) atoms are bridged by an oxamidato group in the cis conformation resulting a copper-copper distance of 5.21 Å. Both copper(II) ions are in square-pyramidal surroundings with almost coplanar basal planes and a water molecule occupying the apical positions. The N atoms of the oxamidato moiety are trigonal. Two lattice water molecules together with the two coordinated ones hydrogen bond with nitrate ions.  相似文献   

8.
1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole (hnt), prepared by alkylation of 3‐nitro‐1, 2, 4‐triazole with 2‐chloroethanol, was found to react with copper(II) chloride and copper(II) perchlorate in acetonitrile/ethanol solutions giving complexes [Cu2(hnt)2Cl4(H2O)2] and[Cu(hnt)2(H2O)3](ClO4)2, respectively. They are the first examples of coordination compounds with a neutral N‐substituted 3‐nitro‐1, 2, 4‐triazole ligand. 1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole and the obtained complexes were characterized by NMR and IR spectroscopy, X‐ray, and thermal analyses. [Cu2(hnt)2Cl4(H2O)2] presents a dinuclear chlorido‐bridged complex in which hnt acts as a chelating bidentate ligand, coordinated to the metal by a nitrogen atom of the triazole ring and an oxygen atom of the nitro group, and the copper atoms are inconsiderably distorted octahedral coordination. [Cu(hnt)2(H2O)3](ClO4)2comprises a mononuclear complex cation, in which two nitrogen atoms of two hnt ligands in trans configuration and three water oxygen atoms form a square pyramidal environment around the copper atom, which is completed to an distorted octahedron with a bifurcated vertex due to two additional elongated Cu–O bonds with two nitro groups. In both complexes, Cu–O bonds with the nitro groups may be considered as semi‐coordinated.  相似文献   

9.
The copper(II) environments for tetra­kis­(1‐eth­yl‐1,2,4‐triaz­ole)­dinitratocopper(II), [Cu(NO3)2(C4H7N3)4], and tetrakis­(1‐prop­yl‐1,2,4‐triazole)dinitratocopper(II), [Cu(NO3)2(C5H9N3)4], are distorted square bipyramidal. Both structures are centrosymmetric, with the copper(II) ions located at inversion centers coordinated by four N atoms of four triazole mol­ecules and by two O atoms of two nitrate ions in an elongated octa­hedral geometry. This elongation is a result of the Jahn–Teller effect. The largest distortion is that of the N—Cu—O angles, which differ from 90° by 5.68 (10)° in the eth­yl and 5.59 (8)° in the prop­yl derivative.  相似文献   

10.
The title compound corresponds to a copper(II) dimer, [Cu2(OH)2(C2H3N)2(C21H22N2)2](ClO4)2, where the metal centres are μ2‐bridged by hydroxo groups. The coordination of each copper(II) centre is a slightly distorted square‐based pyramid, with two N atoms from dibenzyl(6‐methyl‐2‐pyridylmethyl)amine (BiBzMePMA) and two hydroxo O atoms occupying the basal positions, and the aceto­nitrile N atom at the apical position. The dimer is centrosymmetric, with a crystallographic inversion centre midway between the two Cu atoms [Cu⋯Cu = 2.9522 (9) Å]  相似文献   

11.
A compound with a linear trinuclear copper(II) cation, [Cu3(μ-protan)2](ClO4)2·H2O (protanH2 = 3,7-bis(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]-nonane) is formed by reaction of copper(II) perchlorate, 3-aminopropanol, ammonia and methanal. The cation is approximately centrosymmetrical with Cu?Cu = 2.9870(5) and 2.9485(5) Å. The terminal copper(II) ions are coordinated by nitrogen atoms 3 and 7 of the tetraazabicycle (Cu–Nmean = 2.021(5) Å) and the two oxygen atoms of the 3,7-bis(3-olatopropyl) substituents (Cu–Omean = 1.911(3) Å), which also act as bridging groups to the central copper(II) ion (Cu–Omean = 1.926(4) Å). The cation is both helically twisted (dihedral angle N3?N7?N3′?N7′ = 20(1)°) and bent (angle Cu?Cu?Cu = 171(1)°). The copper(II) ions have tetrahedrally twisted square planar primary coordination, with perchlorate ion oxygen atoms weakly coordinated axially to the two terminal copper(II) ions, on opposite sides of the “plane” of the molecule, while the central copper(II) ion is weakly coordinated axially by a water molecule, with all axial Cu–O distances ca. 2.9 Å. One N·CH2·CH2·CH2·O chelate ring for each protan2− ligand shows conformational disorder and the perchlorate ions show rotational disorder. Partial hydrolysis of the protan2− compound gave a compound [{Cu(μ-protan)}Cu(OH)2](ClO4)2·0.5(EtOH) which has a dinuclear cation, with one copper(II) ion in square-planar coordination by tetradentate protan2− and the other in square-planar coordination by the two bridging oxygen atoms of the protan2− ligand and by two hydroxide ions, with Cu?Cu = 3.045(1) Å. With differing mole ratios of the same reactants compounds of the dinuclear cation [{Cu(μ-pta)}2]2+ (ptaH = 3(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]nonane) are formed.  相似文献   

12.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

13.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

14.
In the novel transition metal isothio­cyanate complex of N‐(2‐hydroxy­ethyl)ethyl­enediamine (hydet‐en) with copper, [Cu(NCS)2(C4H12N2O)], the Cu atom lies in a distorted square‐pyramidal environment, coordinated by four N atoms in the basal plane and an apical O atom. The hydet‐en ligand is N,N,O‐tridentate, in contrast to the disposition in previously studied complexes, while the isothio­cyanate ions act as N‐atom donor ligands. The monomeric units are linked to one another by hydrogen bonds.  相似文献   

15.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

16.
In the title coordination polymer, [Cu(C11H7O2)(OH)(H2O)]n, the CuII center is five‐coordinated by two O atoms from two different naphthalene‐1‐carboxylate (L) ligands, one O atom from one coordinated water molecule and two O atoms from two hydroxide anions. L ligands and hydroxide anions jointly bridge adjacent CuII centers to generate a one‐dimensional chain along the b‐axis direction. The results reveal that the steric bulk of the naphthalene ring system in L may play an important role in the formation of the title complex.  相似文献   

17.
A novel copper(II) coordination polymer, poly­[[[aqua­copper(II)]‐μ3‐2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O:O′] dihydrate], {[Cu(C12H6N2O4)(H2O)]·2H2O}n, was obtained by the reaction of CuCl2·2H2O and 2,2′‐bipyridyl‐3,3′‐di­carboxylic acid (H2L) in water. In the mol­ecule, each CuII atom is five‐coordinated and lies at the centre of a square‐pyramidal basal plane, bridged by three L ligands to form a two‐dimensional (4,4)‐network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three CuII atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two‐dimensional square‐grid sheets superimpose in an off‐set fashion through the inorganic water layer.  相似文献   

18.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

19.
Absolute rate constants (keff) for the chemical reactions of Cu(II)2(3,5‐di‐iso‐propylsalicylate)4(H2O)3, Cu(II)2(3,5‐di‐tert‐butylsalicylate)4, Cu(II)2(3,5‐di‐tert‐butylsalicylate)4(H2O)4, Cu(II)2(3,5‐dimethylsalicylate)4(H2O)3, Cu(II)2(3‐ethylsalicylate)4(H2O), Cu(II)2(3‐phenylsalicylate)4, and Cu(II)(3,5‐di‐iso‐propylsalicylate)2(pyridine)2 with tert‐butylperoxyl radical were determined using kinetic electron paramagnetic resonance measurements in 10% toluene in the hexane medium at temperatures ranging from ?63°C to 2°C. These antioxidant (AO) chelates were ranked by their reactivity as follows: 2,6‐di‐tert‐butyl‐4‐methylphenol ? Cu(II)2(3,5‐di‐tert‐butylsalicylate)4 ? Cu(II)2(3‐phenylsalicylate)4 > Cu(II)2(3,5‐di‐iso‐propylsalicylate)4(H2O)3 ? Cu(II)2(3,5‐di‐tert‐butylsalicylate)4(H2O)4 ? Cu(II)2(3,5‐dimethylsalicylate)4(H2O)3 > Cu(II)2(3‐ethylsalicylate)4(H2O) ? Cu(II)(3,5‐di‐iso‐propylsalicylate)2(pyridine)2 at 20°C. Differential pulse voltammetry was used to determine redox behavior of these chelates in CH2Cl2. Two types of salicylic OH groups were detected in these Cu(II) salicylates, characterized by the presence or absence of AO reactivity. One of them was coordinate covalently bonded to Cu(II) via the oxygen atoms of the salicylic OH groups, displaying oxidation peak potentials in the range from +650 to 970 mV versus Ag/Ag+. The second type was intramolecularly hydrogen bonded to carboxylate oxygens, with an oxidation peak potential in the range from +1100 to 1200 mV versus Ag/Ag+. It was concluded that non–hydrogen‐bonded salicylic OH groups are responsible for the antiperoxyl radical reactivity of these chelates, while neither Cu(II) nor salicylate ligands displayed reactivity with peroxyl radical. It has been established in this research that axially bonded electron pair donors such as pyridine and water decrease H‐donating reactivity of Cu(II) salicylates by promoting the formation of intramolecular hydrogen bonding between the salicylic OH hydrogen atoms and carboxylate oxygen atoms in the salicylic ligands. Dependences of log keff at 20°C and the anodic oxidation potential (Epa) for the salicylic OH group on the difference between symmetric and asymmetric stretching frequencies of carboxylate groups (in Fourier transform infrared spectra) for the substituted Cu(II) salicylates were determined. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 56–67, 2010  相似文献   

20.
The crystal structures of the title complexes, namely trans‐bis­(iso­quinoline‐3‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)cobalt(II), [Co(C10H6NO2)2(CH3OH)2], and the corresponding nickel(II) and copper(II) complexes, [Ni(C10H6NO2)2(CH3OH)2] and [Cu(C10H6NO2)2(CH3OH)2], are isomorphous and contain metal ions at centres of inversion. The three compounds have the same distorted octahedral coordination geometry, and each metal ion is bonded by two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two iso­quinoline‐3‐carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O—H⋯O hydrogen bonds between the methanol ligands and neighbouring carboxyl­ate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号