首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral molecule of N‐phenylpyridine‐2‐carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octahedral geometry. The crystal structure is stabilized by intermolecular N—H...O, C—H...O and C—H...π interactions.  相似文献   

2.
In the title compound, [Ni(C12H11N2)2], the NiII cation lies on an inversion centre and has a square‐planar coordination geometry. This transition metal complex is composed of two deprotonated N,N′‐bidentate 2‐[(phenylimino)ethyl]‐1H‐pyrrol‐1‐ide ligands around a central NiII cation, with the pyrrolide rings and imine groups lying trans to each other. The Ni—N bond lengths range from 1.894 (3) to 1.939 (2) Å and the bite angle is 83.13 (11)°. The Ni—N(pyrrolide) bond is substantially shorter than the Ni—N(imino) bond. The planes of the phenyl rings make a dihedral angle of 78.79 (9)° with respect to the central NiN4 plane. The molecules are linked into simple chains by an intermolecular C—H...π interaction involving a phenyl β‐C atom as donor. Intramolecular C—H...π interactions are also present.  相似文献   

3.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

4.
The title complex, [PdCl2(C21H26N2)(C18H15P)], shows slightly distorted square‐planar coordination around the PdII metal centre. The Pd—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.028 (5) Å. The dihedral angle between the two trimethylphenyl ring planes is 36.9 (2)°.  相似文献   

5.
In the title compound, C23H20N2O2S, the central thieno­pyridine ring system is essentially planar, the dihedral angle between the planes of the two rings being 0.3 (2)°. The terminal ethyl carboxyl­ate group is twisted by 26.7 (3)° away from the central ring system. A short intramolecular hydrogen bond involving the amino N atom and the carbonyl O atom [N⋯O = 2.806 (4) Å] forms a pseudo‐six‐membered ring. Significant intermolecular C—H⋯N, C—H⋯O and C—H⋯π interactions contribute strongly to the stability of the structure, along with weak π–π‐stacking interactions.  相似文献   

6.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

7.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

8.
The title compound, [Co(NCS)2(C11H26N4)]2[Zn(NCS)4]·C2H5OH, has two similar cations with the CoIII atom coordinated in a planar fashion by the 13‐membered cyclic tetra­amine, in the 1R,4S,7R,10S configuration, and with trans isothio­cyanate ligands. The six‐membered chelate ring is in a chair conformation, with one axially and one equatorially oriented methyl substituent [mean Co—N = 1.948 (2) Å]. The `opposite' chelate ring (N4 and N7) is in an eclipsed conformation [mean Co—N = 1.928 (2) Å], and the `side' chelate rings have gauche conformations. The mean Co—NNCS distance is 1.928 (2) Å. Both cations have one Co—N—C group nearly linear and the other appreciably bent, with mean Co—N—C angles of 178.7 (1) and 160.4 (1)°, respectively. The [Zn(NCS)4]2− anion is approximately tetra­hedral, with Zn—N = 1.951 (1)–1.986 (1) Å, N—Zn—N = 104.5 (1)–111.9 (1)° and Zn—N—C = 152.5 (1)–179.4 (1)°. One NH group is hydrogen bonded to the ethanol O atom and the other NH groups are bonded to thio­cyanate S atoms, forming a network.  相似文献   

9.
The title complex, [PdCl2(C19H22N2)(C18H15P)], shows slightly distorted square‐planar coordination of the palladium(II) metal center. The Pd—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.008 (3) Å. The dihedral angle between the two di­methyl­phenyl ring planes is 33.17 (13)°.  相似文献   

10.
In the title compound, [Ni(C19H20N2O4)(H2O)2], the Ni atom has a distorted octahedral coordination geometry in which the tetradentate Schiff base ligand acts as a cis‐N2O2 donor defining an equatorial plane, and water mol­ecules occupy the axial positions. The two parts of the mol­ecule are related by a mirror plane that passes through the Ni atom and is perpendicular to the equatorial plane. The angular distortions from normal octahedral geometry are in the range 1–6°, and the equatorial plane, defined by the donor atoms of the Schiff base, is almost square planar. The six‐membered ring comprising the Ni, the imine N and the propyl­ene C atoms adopts a half‐chair conformation. The Ni—O [2.017 (2) Å] and Ni—N [2.071 (2) Å] distances are within the ranges expected for high‐spin octahedral nickel complexes.  相似文献   

11.
The compound N,N′,N′′‐tricyclohexylphosphorothioic triamide, C18H36N3PS or P(S)[NHC6H11]3, (I), crystallizes in the space group Pnma with the molecule lying across a mirror plane; one N atom lies on the mirror plane, whereas the bond‐angle sum at the other N atom has a deviation of some 8° from the ideal value of 360° for a planar configuration. The orientation of the atoms attached to this nonplanar N atom corresponds to an anti orientation of the corresponding lone electron pair (LEP) with respect to the P=S group. The P=S bond length of 1.9785 (6) Å is within the expected range for compounds with a P(S)[N]3 skeleton; however, it is in the region of the longest bond lengths found for analogous structures. This may be due to the involvement of the P=S group in N—H...S=P hydrogen bonds. In O,O′‐diethyl (2‐phenylhydrazin‐1‐yl)thiophosphonate, C10H17N2O2PS or P(S)[OC2H5]2[NHNHC6H5], (II), the bond‐angle sum at the N atom attached to the phenyl ring is 345.1°, whereas, for the N atom bonded to the P atom, a practically planar environment is observed, with a bond‐angle sum of 359.1°. A Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B 58 , 380–388] analysis shows a shift of the maximum population of P=S bond lengths in compounds with a P(S)[O]2[N] skeleton to the shorter bond lengths relative to compounds with a P(S)[N]3 skeleton. The influence of this difference on the collective tendencies of N...S distances in N—H...S hydrogen bonds for structures with P(S)[N]3 and P(S)[O]2[N] segments were studied through a CSD analysis.  相似文献   

12.
<!?tlsb=‐0.2pt>Nitrogen‐based polydentate ligands are of interest owing to their flexible complexation to transition metal atoms. For the title compound, [Ni(C15H17N2)2], a transition metal complex formed by the coordination of two identical N,N′‐bidentate mono(imino)pyrrolyl ligands to an NiII centre, an X‐ray crystal diffraction study indicates that the two ligands show an inverted arrangement with respect to one another around the NiII centre, which is located on a crystallographic inversion centre. The planes of the aromatic substituents at the imine N atoms of the ligands show dihedral angles of 85.91 (5)° with respect to the NiN4 plane. The Ni—N bond lengths are in the range 1.9072 (15)–1.9330 (15) Å and the Nimino—Ni—Npyrrole bite angles are 83.18 (6)°. The Ni—Npyrrole bond is substantially shorter than the Ni—Nimino bond. Molecules are linked into an extensive network by means of intermolecular C—H...π(arene) hydrogen bonds in which every molecule acts both as hydrogen‐bond donor and acceptor. The supramolecular assembly takes the form of an infinite two‐dimensional sheet.  相似文献   

13.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

14.
In the title complex, trans‐{2,2′‐[cyclo­hexane‐1,2‐diyl­bis­(ni­t­rilo­methyl­idyne)]­di­phenol­ato‐κ4O,N,N′,O′}­nickel(II)–chloro­form (1/1), [Ni(C20H20N2O2)]·CHCl3, the Ni atom has a square‐planar geometry, slightly tetrahedrally distorted. The Ni—N and Ni—O bonding distances are within the expected ranges for Ni–Schiff base derivatives. The di­imine bridge has a gauche conformation with the cyclo­hexyl ring almost coplanar with the NiN2O2 plane. The complex mol­ecules pack in dimers with an Ni?Ni distance of 3.59 (1) Å and form a three‐dimensional structure displaying a herring‐bone configuration. Channels are occupied by solvent mol­ecules, which are involved in C—H?O hydrogen bonds with the ligand O atoms.  相似文献   

15.
The title compound [systematic name: 1‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐4‐nitro‐1H‐pyrrolo[2,3‐b]pyridine], C12H13N3O5, forms an intramolecular hydrogen bond between the pyridine N atom as acceptor and the 5′‐hydroxy group of the sugar residue as donor. Consequently, the N‐glycosylic bond exhibits a syn conformation, with a χ torsion angle of 61.6 (2)°, and the pentofuranosyl residue adopts a C2′‐endo envelope conformation (2E, S‐type), with P = 162.1 (1)° and τm = 36.2 (1)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a torsion angle γ = 49.1 (2)°. The title nucleoside forms an ordered and stacked three‐dimensional network. The pyrrole ring of one layer faces the pyridine ring of an adjacent layer. Additionally, intermolecular O—H...O and C—H...O hydrogen bonds stabilize the crystal structure.  相似文献   

16.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

17.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

18.
In the complex salt [η6‐1‐chloro‐2‐(pyrrolidin‐1‐yl)benzene](η5‐cyclopentadienyl)iron(II) hexafluoridophosphate, [Fe(C5H5)(C10H12ClN)]PF6, (I), the complexed cyclopentadienyl and benzene rings are almost parallel, with a dihedral angle between their planes of 2.3 (3)°. In a related complex salt, (η5‐cyclopentadienyl){2‐[η6‐2‐(pyrrolidin‐1‐yl)phenyl]phenol}iron(II) hexafluoridophosphate, [Fe(C5H5)(C16H17NO)]PF6, (II), the analogous angle is 5.4 (1)°. In both complexes, the aromatic C atom bound to the pyrrolidine N atom is located out of the plane defined by the remaining five ring C atoms. The dihedral angles between the plane of these five ring atoms and a plane defined by the N‐bound aromatic C atom and two neighboring C atoms are 9.7 (8) and 5.6 (2)° for (I) and (II), respectively.  相似文献   

19.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

20.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号