首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质组学是在整体水平上研究细胞、组织或生物体蛋白质组成及变化规律的科学.与传统的生物学研究相比,蛋白质组学具有快速、灵敏、高通量的优点.神经退行性疾病是一类由神经系统内特定神经细胞的进程性病变或丢失而导致神经功能障碍的疾病,严重危害人类健康.近年来,基于质谱的蛋白质组学技术在神经退行性疾病的研究中得到了广泛应用.本文简要介绍了蛋白质组学在样品分离、多肽定量、质谱检测及生物标志物临床验证等方面的技术发展,并结合实例综述了基于质谱的蛋白质组学在神经退行性疾病生物标志物发现与验证中的研究进展.  相似文献   

2.
3.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   

4.
Cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Cancer biomarker-based diagnostics have applications for establishing disease predisposition, early detection, cancer staging, therapy selection, identifying whether or not a cancer is metastatic, therapy monitoring, assessing prognosis, and advances in the adjuvant setting. Full adoption of cancer biomarkers in the clinic has to date been slow, and only a limited number of cancer biomarker products are currently in routine use.Among proteomic technologies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) is a technique that has allowed rapid progress in cancer biology. Different further developed methods including e.g. SELDI (surface-enhanced laser desorption/ionization) and MELDI (material-enhanced laser desorption/ionization) are simple and high-throughput techniques that analyze with high sensitivity and specificity intact proteins expressed in complex biological mixtures, such as serum, urine, and tissues. The combination of mass spectrometry (MS) with infrared (IR) spectroscopic imaging is an attempt to combine different technologies in systems analytics. Both MALDI-TOF and infrared tissue imaging enable studying proteins distribution in tissue samples with a resolution down to 50 and 5 μm, respectively.In this review, we summarize recent applications and the synergistic combination of these new technologies to proteomic profiling for cancer biomarker discovery.  相似文献   

5.
Mass spectrometry has arguably become the core technology for the characterization of food proteins and peptides. The application of mass spectrometry-based techniques for the qualitative and quantitative analysis of the complex protein mixtures contained in most food preparations is playing a decisive role in the understanding of their nature, structure, functional properties and impact on human health. The application of mass spectrometry to protein analysis has been revolutionized in the recent years by the development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption/ionization, and by the introduction of multi-stage and ‘hybrid’ analyzers able to generate de novo amino acid sequence information. The interfacing of mass spectrometry with protein databases has resulted in entirely new possibilities of protein characterization, including the high sensitivity mapping (femtomole to attomole levels) of post-translational and other chemical modifications, protein conformations and protein–protein and protein–ligand interactions, and in general for proteomic studies, building up the core platform of modern proteomic science. MS-based strategies to food and nutrition proteomics are now capable to address a wide range of analytical questions which include issues related to food quality and safety, certification and traceability of (typical) products, and to the definition of the structure/function relationship of food proteins and peptides. These different aspects are necessarily interconnected and can be effectively understood and elucidated only by use of integrated, up-to-date analytical approaches. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of food proteins are presented, with focus on issues related to their detection, identification, and quantification, relevant for their biochemical, technological and toxicological aspects.  相似文献   

6.
Fliser D  Wittke S  Mischak H 《Electrophoresis》2005,26(14):2708-2716
The introduction of fast, sensitive, and robust techniques for proteomic analysis into clinical practice represents a major step toward a new diagnostic approach of body fluids. In addition, proteomics emerges as a key technology for the discovery of disease biomarkers in various body fluids. However, even in relatively protein-deprived body fluids such as urine, the complexity and wide dynamic range of protein expression pose a considerable challenge to both separation and identification technologies. In the present review we discuss from a clinical point-of-view recent advances of the use of proteomics in clinical diagnosis as well as therapy evaluation. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS) and discuss CE-MS from an application point of view evaluating its merits and vices with regard to biomarker discovery. This review further presents examples of clinical applications of CE-MS for detection and identification of biomarkers in urine.  相似文献   

7.
8.
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.  相似文献   

9.
Ricin is a protein toxin of considerable interest in forensics. A novel strategy is reported here for rapid detection of ricin based on microwave‐assisted hot acid digestion and matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. Ricin samples are subjected to aspartate‐selective hydrolysis, and biomarker peptide products are characterized by mass spectrometry. Spectra are obtained using post source decay and searched against a protein database. Several advantages are offered by chemical hydrolysis, relative to enzymatic hydrolysis, notably speed, robustness, and the production of heavier biomarkers. Agglutinin contamination is reliably recognized, as is the disulfide bond strongly characteristic of ricin.  相似文献   

10.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

11.
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus–host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein–protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.  相似文献   

12.
Existing colorectal cancer biomarkers are insufficient for providing a quick and accurate diagnosis, which is critical for a good prognosis. More appropriate biomarkers are thus needed. To identify new colorectal cancer biomarker candidates, we conducted a comprehensive differential proteomic analysis of six cancer cell lines and a normal cell line, utilizing a fluorogenic derivatization–liquid chromatography–tandem mass spectrometry (FD‐LC‐MS/MS) approach. Two sets of intracellular biomarker candidates were identified: one for colorectal cancer, and the other for metastatic colorectal cancer. Our results suggest that cooperative expression of FABP5 and cyclophilin A might be linked to Her2 signaling. Upregulation of LDHB and downregulation of GAPDH suggest the existence of a specific nonglycolytic energy production pathway in metastatic colorectal cancer cells. Downregulation of 14‐3‐3ζ/δ, cystatin‐B, Ran and thioredoxin could be a result of their secretion, which then stimulates metastasis via activity in the sera and ascitic fluids. We propose a possible flow scheme to describe the dynamics of protein expression in colorectal cancer cells leading to tumor progression and metastasis via cell proliferation, angiogenesis, disorganization of actin filaments and epithelial–mesenchymal transition. Our results suggest that colorectal tumor progression may be regulated by signaling mediated by Her2, hypoxia, and TGFβ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Paenibacillus polymyxa are rhizobacteria with a high potential to produce natural compounds of biotechnological and medical interest. Main products of P . polymyxa are fusaricidins, a large family of antifungal lipopeptides with a 15‐guanidino‐3‐hydroxypentadecanoic acid (GHPD) as fatty acid side chain. We use the P . polymyxa strain M‐1 as a model organism for the exploration of the biosynthetic potential of these rhizobacteria. Using matrix‐assisted laser‐desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) about 40 new fusaricidins were detected which were fractionated by reversed‐phase (rp) HPLC. Their structure was determined by MALDI‐LIFT‐TOF/TOF fragment analysis. The dominant fragment in the product ion spectra of fusaricidins appeared at m /z 256.3, 284.3 and 312.4, respectively, indicating variations in their fatty acid part. Two new subfamilies of fusaricidins were introduced which contain guanidino‐3‐hydroxyhepta‐ and nonadecanoic acid as fatty acid constituents. Apparently, the end‐standing guanidine group is not modified as shown by direct infusion nano‐electrospray ionization mass spectrometry (nano‐ESI MS). The results of this study suggest that advanced mass spectrometry is the method of choice for investigating natural compounds of unusual diversity, like fusaricidins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
One of the main objectives of wheat glutenin subunit (GS) analysis is the identification of protein components linked to wheat quality. The proteomic characterization of glutenin has to consider the relatively low levels of arginine and lysine residues and the close sequence similarity among the different groups of these subunits, which hinders or even prevents the identification of the GS. In this study, a proteomic approach has been applied to resolve the heterogeneity of wheat glutenin components. Proteins extracted from Triticum durum flour were first analyzed by two‐dimensional gel electrophoresis, which greatly reduced glutenin complexity. The identity of each spot was confirmed by nano liquid chromatography tandem mass spectrometry analysis of tryptic peptides. In parallel, measurements of the high mass range by matrix‐assisted laser desorption/ionization time‐of‐flight analysis allowed detection of the large tryptic peptides. Gathering all data from search engine interrogation, very high sequence coverage was obtained for high molecular weight GS, including Bx7 and By8, in agreement with the known genetic profile of durum wheat. In addition, a truncated form of By8, never detected before, was also found. Low molecular weight GS (LMW‐GS) B‐type was identified with reasonable sequence coverage, while a clear identification of LWM‐GS C‐ and D‐type was hindered by the incompleteness of the wheat DNA databases. This study represents the first comprehensive analysis of the glutenin proteome and provides a reliable method for classifying wheat varieties according to their glutenin profile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte–wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.  相似文献   

16.
Matrix-assissted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analyses of complete proteolytic digests are often hampered by contaminations and the complexity of the sample. This results in suppression effects and the formation of adducts which are difficult to assign, thus leading to low scores in database searches. In particular, signals of post-translationally modified peptides such as glycopeptides are often of low intensity or completely suppressed. Online liquid chromatography electrospray ionization mass spectrometry (ESI-MS) can, in part, overcome this problem, but the analytes are completely consumed during the run. Coupling of nano-flow HPLC (nano-LC), microfractionation and MALDI-TOF-MS combines separation and high-sensitivity UV detection with the possibility of collecting fractionated peptides and preserving the sample for detailed mass spectrometric analyses. Here we report on an optimized protocol for nano-LC-MALDI-TOF-MS analyses of glycoproteins. This protocol improves spectral quality, resulting in better protein identification scores in database searches. Furthermore, post-translationally modified peptides could be detected with higher sensitivity by changing the experimental conditions, allowing assignment, localization and characterization of the respective carbohydrate substituents.  相似文献   

17.
《Electrophoresis》2018,39(8):1062-1070
Corals especially the reef‐building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. A robust and versatile protein extraction protocol is required for coral proteomics. However, a comparative evaluation of different protein extraction protocols is still not available for proteomic analysis of stony corals. In the present study, five protocols were compared for protein extraction from stony corals. The five protocols were TRIzol, phenol‐based extraction (PBE), trichloroacetic acid (TCA)‐acetone, glass bead‐assisted extraction (GBAE) and a commercially available kit. PBE, TRIzol and the commercial kit were more robust for extracting proteins from stony corals. The protein extraction efficiency and repeatability, two dimensional electrophoresis (2‐DE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) were employed to evaluate the protocols. The results indicated that PBE protocol had the better protein extraction efficiency than the others. Protein extraction coverage varied among the procedures. Each protocol favored for certain proteins. Therefore, it is very important for coral proteomic analysis to select a suitable protein protocol upon the experimental design. In general, PBE protocol can be the first choice for extracting proteins from stony corals.  相似文献   

18.
We define mAb proteomics as the global generation of disease specific antibodies that permit mass screening of biomarkers. An integrated, high-throughput, disease-specific mAb-based biomarker discovery platform has been developed. The approach readily provided new biomarker leads with the focus on large-scale discovery and production of mAb-based, disease-specific clinical assay candidates. The outcome of the biomarker discovery process was a highly specific and sensitive assay, applicable for testing of clinical validation paradigms, like response to treatment or correlation with other clinical parameters. In contrast to MS-based or systems biology-based strategies, our process produced prevalidated clinical assays as the outcome of the discovery process. By re-engineering the biomarker discovery paradigm, the encouraging results presented in this paper clearly demonstrate the efficiency of the mAb proteomics approach, and set the grounds for the next steps of studies, namely, the hunt for candidate biomarkers that respond to drug treatment.  相似文献   

19.
Although numerous biomarkers or biomarker candidates have been discovered to detect levels of drinking and intervals of time after last drinking episode, only a few biomarkers have been applied to monitor abstinence in a longer interval (≥6 wks) from alcohol abuse. Considering sample sources, sensitivity, and specificity, new biomarkers from blood with better accuracy are needed. To address this, serum proteomic profiles were compared between pre‐ and post‐ treatment samples from subjects seeking treatment for alcohol abuse and dependence in an intensive 6wk daily outpatient program using high‐abundance plasma protein immunodepletion and LC‐MS/MS techniques. Protein identification, quantification, candidate biomarker selection, and prioritization analyses were carried out. Among the 246 quantified serum proteins, abundance of 13 and 45 proteins in female and male subjects were significantly changed (p ≤ 0.05), respectively. Of these biomarker candidate proteins, 2 (female) and 8 (male) proteins were listed in category 1, with high area under the receiver operating characteristic curve, sensitivity, specificity, and fold change. In summary, several new biomarker candidates have been identified to monitor abstinence from alcohol abuse.  相似文献   

20.
The overall history and recent advances in surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) technology is reviewed herein. Fundamentals of SELDI-TOF analysis are presented while drawing comparisons with other laser-based mass spectrometry techniques. The application of SELDI-TOF-MS to functional genomics and biomarker discovery is discussed and exemplified by elucidating a biomarker candidate for prostatic carcinoma. Finally, a short discussion regarding future SELDI requirements and developments is supplied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号