首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

2.
Five new Cu(II), Zn(II), and Ni(II) 3-(4-nitrophenyl)acrylic acid complexes were synthesized and evaluated for inhibitory activity on jack bean urease. All five complexes were structurally determined by single crystal X-ray analysis. Compared with the positive reference acetohydroxamic acid (IC50?=?13.25?μM), Cu(II) complexes 3 and 4 showed the strongest inhibitory activity against jack bean urease (IC50?=?1.23 and 1.17?μM). Ni(II) and Zn(II) complexes also exhibited inhibitory activities (IC50?=?10.09–13.10?μM).  相似文献   

3.

New azodye ligand (H2L) and its relative Cr(III)-, Mn(II)-, Fe(III)-, Co(II)-, Ni(II)-, Cu(II)-, Zn(II)- and Cd(II)-nanosized complexes were prepared. A new synthesized compounds were characterized using spectral (mass, IR, UV–Vis, XRD, and ESR) and analytical (elemental, molar conductance, thermal and magnetic moment measurements) tools. Infrared spectra showed that the ligand behaves as a monobasic bidentate, coordinating with central atoms through carbonyl oxygen and α-hydroxyl group. The geometrical structures of Cr(III) and Fe(III) complexes were found to be in octahedral configuration, whereas Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have tetrahedral forms. XRD patterns reflect an amorphous appearance of all investigated complexes. TEM images showed nanosized particles and identical distribution over the complex surface. Molecular modeling for the drug ligand and its metal ion complexes were performed using Gaussian09 program to assert on their structural formulae. Some essential parameters were extracted using HOMO and LUMO energies. AutoDock tools 4.2 was used to simulate the interaction process with infected cell proteins to expect the experimental pathway. The inhibition activity of drug ligand and its metal ion complexes was evaluated towards different types of bacteria and fungi through in vitro antimicrobial activities. The antitumor activities of all compounds are straightened towards human liver carcinoma (HEPG2) cell lines. Fe(III) and Co(II) complexes exhibited IC50 of 2.90 and 4.23 µg mL?1, respectively, which means they are more potent anticancer drug than the standard (doxorubicin, IC50 = 4.73 µg mL?1). Therefore, the two complexes may consider promising anticancer drugs.

  相似文献   

4.
Six novel mixed‐ligand copper(II) complexes, namely, [Cu(R‐tpy)(L)]NO3 ( 1–6 ), where R‐tpy is 4′‐phenyl‐2,2′:6′,2′′‐terpyridine (Ph‐tpy; 1–3 ) and 4′‐ferrocenyl‐2,2′:6′,2′′‐terpyridine (Fc‐tpy; 4–6 ), L is the bidentate O,O donor monoanion of plumbagin (5‐hydroxy‐2‐methyl‐1,4‐naphthoquinone; plum in 1 , 4 ), chrysin (5,7‐dihydroxyflavone; chry in 2 , 5 ) and curcumin (bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐diene‐3,5‐dione; curc in 3 , 6 ) have been synthesized and characterized and their in vitro cytotoxicity against cancer cells is evaluated. The energy optimized structures and the frontier orbitals of the complexes have been obtained from the DFT calculations. Complexes 4–6 with a conjugated ferrocenyl moiety and TCM anticancer ligands, namely, plum (in 4 ), chry (in 5 ) and curc (in 6 ) showed potent cytotoxicity giving respective IC50 values of 1.2 μM, 0.62 μM and 0.21 μM in HeLa and 2.0 μM and 1.0 μM and 0.34 μM in MCF‐7 cancer cells while being much less toxic to MCF‐10A normal cells (IC50: 8.3‐17.1 μM). In contrast, complexes 1–3 with a conjugated phenyl moiety were appreciably less toxic to HeLa cells with respective IC50 values of 10.4 μM, 8.1 μM and 5.5 μM when compared with their ferrocenyl analogues 4–6 . Mechanistic studies using Hoechst staining and Annexin‐V‐FITC assays on cancer cells revealed an apoptotic pathway of cell death induced by the complexes. Fluorescence imaging study showed that complex 6 having curcumin as ligand localized primarily in the mitochondria of HeLa cells. Thus, we demonstrate in this study that ferrocene conjugation to copper(II) complexes of TCM anticancer ligands significantly increases the selectivity and cytotoxicity of the resulting complexes towards cancer cells over normal cells.  相似文献   

5.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

6.
A novel oxazon‐Schiff's base ligand named (E)‐3‐(2‐(4‐(diethylamino)‐2‐hydroxybenzylidene)hydrazineyl)‐2H‐benzo[b][1,4]oxazin‐2‐one (HL) has been synthesized in addition to its nano‐sized divalent and tetravalent Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pt (IV) complexes. The structures and geometries of the synthesized compounds have been confirmed using the different analytical and spectroscopic tools such as elemental analysis, uv–vis., IR, HR‐MS, 1H NMR, ESR, TGA, XRD, EDX, TEM, SEM, AFM, magnetic and molar conductivity measurements. The elemental analyses confirm 1 M: 2 L stoichiometry of the type [PtL2].2Cl and [ML2] (M = Mn (II), Co (II), Ni (II), Cu (II) and Zn (II)). The FT‐IR spectral studies illustrated that the ligand bind to the metal ions through the phenolic hydroxy oxygen, azo methine nitrogen carbonyl oxazin oxygen. The spectral tools; UV–Vis, ligand field parameters and ESR in addition to the magnetic moment measurements confirmed octahedral geometry around the metal centres. The absence of coordinated or hydrated water complexes were confirmed by thermal analysis data of the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry. XRD, SEM, TEM, and AFM images confirmed nano‐sized particles and homogeneous distribution over the complex surface. The mode of binding of the complexes with DNA has been performed through electronic absorption titration and viscosity studies. The reaction between the metal complexes and DNA were studied by DNA cleavage. In general, MCF‐7 cell were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HepG‐2. The binding mode of the compounds and DNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies . Finally, a linear and exponential correlation between interaction constant (Kb) and IC50 for two human cancer cell was observed.  相似文献   

7.
A novel azo dye ligand, 2,2′‐(1,3‐phenylenebis(diazene‐2,1‐diyl))bis(4‐chlorophenol), was synthesized from the diazotization of m ‐phenelyenediamine and coupling with p ‐chlorophenol in alkaline medium. Mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of the azo ligand (H2L) were prepared and characterized using elemental analyses, infrared spectroscopy, electron spin resonance, magnetic susceptibility, conductance measurements and thermal analyses. The UV–visible, 1H NMR and mass spectra of the ligand and its chelates were also recorded. The analytical data showed that the metal‐to‐ligand ratio in the mononuclear azo complexes was 1:1. Diffuse reflectance and magnetic moment measurements revealed the complexes to have octahedral geometry. The infrared spectral data showed that the chelation behaviour of the ligand towards transition metal ions was through phenolic oxygen and azo nitrogen atoms. The electronic spectral results indicated the existence of π → π* (phenyl rings) and n → π* (─N═N) and confirmed the mentioned structure. Molar conductivity revealed the non‐electrolytic nature of all chelates. The presence of water molecules in all complexes was supported by thermal studies. Molecular docking was used to predict the binding between H2L and the receptors of breast cancer mutant 3hb5‐oxidoreductase, crystal structure of Escherichia coli (3 t88) and crystal structure of Staphylococcus aureus (3q8u). The molecular and electronic structure of H2L was optimized theoretically and the quantum chemical parameters were calculated. In addition, the effects of the H2L azo ligand and its complexes on the inhibition of bacterial or fungal growth were evaluated. The prepared complexes had enhanced activity against bacterial or fungal growth compared to the H2L azo ligand.  相似文献   

8.
A series of twenty compounds inclusive of bidentate Schiff bases derived from condensation of 4‐methyl‐3‐thiosemicarbazide with substituted derivatives of napthaldehyde/benzaldehyde/salicylaldehyde and their mononuclear Co (II), Ni (II), Cu (II) and Zn (II) complexes in molar ratio (1:1) were synthesized and characterized. The coordination behavior, modes of bonding and overall geometry of the compounds was known from the elemental analysis, spectral techniques (IR, UV–Vis, 1H NMR, 13C NMR, ESR and ESI‐mass), magnetic moment measurements, molar conductance, thermal and powder XRD studies. The studies revealed octahedral geometry for all the complexes where ligands coordinated in a neutral bidentate manner (NS) via nitrogen atom of azomethine group and sulphur atom of thione group with the metal centre. In vitro biological effects of the compounds were tested against four bacterial species and two fungal strains. The results indicated that the metal complexes showed a marked enhancement in biocidal activity in comparable with the parent Schiff bases. In vitro anticancer activity against the malignant tumor cell lines; human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and human normal lung cell line (MRC‐5) using MTT assay, exposed compound 16 as a leading member with lowest IC50 value of 10.6 ± 0.14 μM against (A549) cell line.  相似文献   

9.
A new azo dye ligand of sulfaguanidine with 5‐nitro‐8‐hydroxyquinoline and its Mn(II), Ni(II), Co(II) and Cu(II) complexes were synthesized and characterized using elemental analysis, inductively coupled plasma, molar conductance, X‐ray powder diffraction, thermogravimetric analysis, magnetic moment measurements, and infrared, 1H NMR, electron impact mass and UV–visible spectral studies. The spectral studies and analytical data revealed that the azo dye ligand acts as a monobasic bidentate ligand via deprotonated OH and nitrogen atom of the azo group. The data support the mononuclear formulation of all complexes, except Cu(II) complex that has a binuclear formulation with a 1:2 metal to ligand ratio. The complexes have tetrahedral structure except Ni(II) which has octahedral geometry. The molar conductance data reveal that all the metal complexes are non‐electrolytic in nature The average particle size of the ligand and its Mn(II), Ni(II), Co(II) and Cu(II) complexes is 0.12–0.91 nm. The effect of these compounds for improvement of chemical durability of silicate glass in 0.1 M HCl was studied. Window and soda‐lime silica glass were taken as samples for the durability experiments. The inhibition efficiency of the ligand and its complexes for corrosion of glass surfaces after dissolution experiments was evaluated quantitatively using the specific weight loss method and qualitatively using scanning electron microscopy. The inhibition efficiencies of the tested compounds follow the order Co(II) complex > Mn(II) complex > Ni(II) complex > H3L > Cu(II) complex. The chemical durability improvement is 88.12–56.25% and 87.99–51.96% for window and soda‐lime silica glass, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) 3-methyladipates were investigated and their qualitative composition and magnetic moments were determined. The IR spectra and powder diffraction patterns of the complexes prepared of the general formula M(C7H10O4nH2O (n=0-11) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Co, Ni) or two steps (Mn, Zn) losing all crystallization water molecules (Co, Ni) or some water molecules (Mn, Zn) and then anhydrous (Co, Ni, Cu) or hydrated complexes (Mn, Zn) decompose directly to oxides (Mn, Co, Zn) or with intermediate formation the mixture of M+MO (Ni, Cu). The carboxylate groups are bidentate (Mn, Co, Ni, Cu) or monodentate (Zn). The complexes exist as polymers. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.48, 4.49, 2.84 and 1.45 B.M., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

12.
A new azo dye ligand of sulfadiazine with 5‐nitro‐8‐hydroxyquinoline (H2L) and its Cu(II), Mn(II), Co(II), and Ni(II) complexes have been synthesized and characterized using CHN, 1H NMR, EI‐mass, inductive coupled plasma, molar conductance, IR, thermogravimetric analysis, magnetic moment measurements, and UV–vis spectra. On the basis of spectral studies and analytical data, the azo dye acts as a monobasic bidentate ligand coordinating to the metal ions via deprotonated OH and azo nitrogen atom. The spectral data showed that the synthesized complexes have octahedral geometry. The application of the obtained chelates in the oxidative decomposition of three different textile dyes (i.e., AB92, AB40, and AB129) in the presence of H2O2 as an oxidant has been studied. The obtained results indicated that the reactivity of catalysts toward the decolorization of AB40 showed the following order: Cu complex > Ni complex > Co complex > Mn complex; the reactions obey the first‐order reaction mechanism, and the rate constants were determined.  相似文献   

13.
Polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) were prepared by the reaction of 3‐allyl‐5‐[(4‐nitrophenylazo)]‐2‐thioxothiazolidine‐4‐one (HL) with metal ions. The structure of polymer complexes was characterized by elemental analysis, IR, UV–Vis spectra, X‐ray diffraction analysis, magnetic susceptibility, conductivity measurements and thermal analysis. Reaction of HL with Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) ions (acetate or chloride) give polymer complexes ( 1–5 ) with general stoichiometric [M(L)(O2CCH3)(H2O)2]n (where L = anionic of HL and M = Co(II) (1) or Ni(II) (2) ), [Mn(HL)2(OCOCH3)2]n (3) , [Cr(L)2(Cl)(H2O)]n (4) and [Cd(HL)(O2CCH3)2]n (5) . The value of HOMO–LUMO energy gap (ΔE) for forms (A‐C) of monomer (HL) is 2.529, 2.296 and 2.235 eV, respectively. According to ΔE value, compound has minimum ΔE is the more stable, so keto hydrazone form (C) is more stable than the other forms (azo keto form (A), azo enol form (B)). The interaction between HL, polymer complexes of Co(II), Ni(II), Mn(II), Cr(III) and Cd(II) with Calf thymus DNA showed hypochromism effect. The HL and its polymer complexes were tested against some bacterial and fungal species. The results showed that the Cr(III) polymer complex (4) has more antibacterial activity than HL and polymer complexes (1–3 and 5) against Bacillus subtilis, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

14.
The Schiff base furfural-histidine with Co(II), Ni(II), Cu(II), and Zn(II) in solution gives M(AB), M(AB)B, or M(AB)2. The Schiff base is tetradentate in M(AB)2 and M(AB)B and tridentate in M(AB)2; [M(AB)2] · 2H2O (M = Co, Ni and Zn) and [Cu(AB)]NO3 were synthesized and characterized by elemental analysis, molecular weight determination, conductance, IR, UV–Vis, and CV. The electronic spectral measurements indicate that M(AB)2 (M = Co(II) and Ni(II)) are octahedral and Cu(AB) is square planar geometry. The donor groups in the complexes have been identified by IR. The complexes undergo irreversible one step, two-electron reduction. Antibacterial activity of the complexes was screened for Escherichia coli and Staphylococcus aureus. Cu(II) complex was found to be more active than the Co(II), Ni(II), and Zn(II) complexes.  相似文献   

15.
A novel bidentate Schiff base ligand (L) and some d‐transition metal chelates (Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) were synthesized and characterized using various physicochemical and spectroscopic techniques like elemental analysis, IR, mass, UV–visible and thermal analysis. The spectroscopic data suggested that the parent Schiff base ligand coordinated to the metal ions through both imine nitrogen atoms. The molecular and electronic structure of the free ligand was optimized theoretically, and the quantum chemical parameters were calculated. The molecular structure can be used to investigate the coordination sites and the total charge density around each atom. The free ligand and its complexes were screened for their antimicrobial activities for various pathogenic bacteria and fungi. The anticancer activities of the free ligand, Cr (III), Mn (II) and Fe (III) complexes were screened against MCF‐7 cell line and found that Mn (II) complex has the lowest IC50 (15.90 μg/ml). Molecular docking was used to predict the binding between the free ligand with receptor of mutant human androgen (ARccr) derived from androgen‐independent prostate cancer (1GS4), crystal structure of yeast‐specific serine/threonine protein phosphatase (ppz1) of Candida Albicans (5JPE) and crystal structure of renal tumor suppressor protein, folliculin (3 V42) and to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

16.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

17.
A novel tetradentate azo‐Schiff base ligand (H2L) was synthesized by 2:1 molar condensation of an azo‐aldehyde and ethylenediamine. Its mononuclear Cu(II), Ni(II), Co(II) and Zn(II) complexes were prepared and their structures were confirmed using elemental analysis, NMR, infrared and UV–visible spectroscopies and molar conductivity measurements. The results suggest that the metal ion is bonded to the tetradentate ligand through phenolic oxygens and imine nitrogens of the ligand. The solid‐state structures of the azo‐Schiff base ligand and its Cu(II) complex were determined using single‐crystal X‐ray diffraction studies. The azo‐Schiff base ligand lies on a crystallographic inversion centre and thus the asymmetric unit contains half of the molecule. X‐ray data revealed that keto–amine tautomer is favoured in the solid‐state structure of the ligand. In the structure of the Cu(II) complex, the Cu(II) ion is coordinated to two phenolate oxygen atoms and two imine nitrogen atoms of the azo‐Schiff base ligand with approximate square planar geometry. The anticancer activity of the synthesized complexes was investigated for human cancer cell line (MCF‐7) and cytotoxicity of the synthesized compounds was determined against mouse fibroblast cells (L929). The ligand and its complexes were found to show antitumor activity. The synthesized metal complexes were optimized at the B3LYP/LANL2DZ level and a new theoretical formula for MCF‐7 cells was also derived.  相似文献   

18.
Development of new treatment strategies and chemotherapeutic agents is urgently needed to combat the growing multidrug resistant species of Candida. In this direction, a new series of Cu (II), Co (II), Ni (II) and Zn (II) heteroleptic complexes were synthesized, characterized and evaluated for antifungal activity. Based on spectral characterization and physical measurements, an octahedral geometry was assigned to [Co(L1)(L2)ClH2O] ( C2 ), [Ni(L1)(L2)ClH2O] ( C3 ), [Zn(L1)(L2)ClH2O] ( C4 ) complexes, while a distorted octahedral geometry was assigned to [Cu(L1)(L2)ClH2O] ( C1 ) complex. All the synthesized compounds were tested for antifungal activity against 11 Candida albicans isolates, including fluconazole (FLC)‐resistant isolates, by determining minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC), following CLSI guidelines. The mechanism of their antifungal activity was assessed by studying their effect on the plasma membrane using flow cytometry and quantifying the ergosterol contents. All the test compounds showed varying levels of antifungal activity. Both the ligands showed moderate antifungal activity with a median MIC value of 100 μg/mL with no fungicidal activity. Compound C3 was the most potent compound with median MIC and MFC values of 0.10 and 1.60 μg/mL, respectively. Flow cytometry analysis revealed that these compounds at MFC values disrupt the cell membrane, resulting in propidium iodide entering the cells. These compounds also reduced a considerable amount of ergosterol content after treating the cells with MIC and sub‐MIC values. This study indicates that these compounds have high antifungal activity against C. albicans, and have the potential to be developed as novel antifungal drugs.  相似文献   

19.
Complexes of diacetyl salicylaldehyde oxalic acid dihydrazone, CH3COC(CH3)= NNHCOCONHN=CHC6H4(OH),(dsodh) and diacetyl salicylaldehyde malonic acid dihydrazone CH3COC(CH3)=NNHCOCH2CONHN=CHC6H4(OH), (dsmdh) of general compositions [M(L)]Cl, [M′(L)Cl], [M(L′)]Cl and [M′(L′)Cl] (where M?=?Co(II), Cu(II), Zn(II), Cd(II) and M′?=?Ni(II); HL?=?dsodh and HL′?=?dsmdh) were prepared and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and infrared spectra and X-ray diffraction data. The magnetic moments and electronic spectra indicate six-coordinate octahedral geometry for Co(II) and square planar geometry for Ni(II) complexes. The ESR spectral data of Cu(II) complexes in DMF solution reveal a tetragonally distorted octahedral geometry. Both ligands bond through >C=O, >C=N and deprotonated phenolate groups in all octahedral complexes and through >C=N and deprotonated phenolate groups in Ni(II) square planar complexes. The lattice parameters for Cu(dsodh) and Co(dsmdh) correspond to an orthorhombic and Ni(dsodh) corresponds to a tetragonal crystal lattice.

The complexes show significant antifungal activity against a number of pathogenic fungi viz. Stemphylium, Myrothecium and Alternaria. The antibacterial activity was studied against Pseudomonas fluorescence (gram ?ve) and Clostridium thermocellum (gram +ve).  相似文献   

20.
A new azo dye with N3O2 donor set of atoms has been synthesized via coupling reaction of 2,6‐diaminopyridine with p‐methoxybenzaldehyde. The molecular and electronic structure of the azo dye ligand (L) was optimized theoretically and the quantum chemical parameters were calculated. Molecular docking was used to predict the binding between L and the receptors of breast cancer mutant 3hb5‐oxidoreductase, crystal structure of Escherichia coli (3 T88) and crystal structure of Staphylococcus aureus (3q8u). The newly synthesized L was used for complex formation with Cr(III), Mn(II), Fe(III), Co.(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions. The nature of bonding and the stoichiometry of L and its mononuclear complexes were deduced from elemental analyses, spectroscopic, magnetic susceptibility, molar conductance, electron spin resonance and conductivity measurements, thermogravimetric analyses and powder X‐ray diffraction. Elemental analysis data show that the complexes have composition of ML type with an octahedral geometry for all the complexes. The activation thermodynamic parameters were calculated. The prepared azo dye and its metal complexes were tested against various Gram‐positive and Gram‐negative bacteria and a fungus. Most complexes exhibit antibacterial and antifungal activities against these organisms. Anticancer evaluation studies against standard breast cancer cell line were performed using various concentrations. The activity index was calculated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号