首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
Selenized glucose can be easily prepared via the selenization reaction of glucose using in situ generated NaHSe as the selenization reagent. The technique has been industrialized to produce the chemical in kilogram scale, making it an easily available material in laboratory presently. The selenized glucose may be widely used as the starting material for the preparation of selenium-containing catalysts, as the organoselenium additive for feeds, and as the efficient selenium-enriched foliar fertilizers. In this work, we found that treating Fusarium graminearum, a fungal pathogen inciting wheat scab disease, with selenium glucose could significantly inhibit the generation of the deoxynivalenol (DON) toxin, which might be a breakthrough for reducing the detriment of the wheat scab disease.  相似文献   

2.
An enantiospecific palladium‐catalyzed decarboxylative coupling of acyclic β,γ‐alkynoic acids with various aryl iodides to chiral tetrasubstituted allenes is described. The coupling reaction comprises a decarboxylative γ‐palladation of α,α‐disubstituted carboxylic acids to provide the tetrasubstituted allenes with complete point‐to‐axial chirality transfer in excellent yields.  相似文献   

3.
The development of a new decarboxylative cross‐coupling method that affords terminal and substituted alkynes from various carboxylic acids is described using both nickel‐ and iron‐based catalysts. The use of N‐hydroxytetrachlorophthalimide (TCNHPI) esters is crucial to the success of the transformation, and the reaction is amenable to in situ carboxylic acid activation. Additionally, an inexpensive, commercially available alkyne source is employed in this formal homologation process that serves as a surrogate for other well‐established alkyne syntheses. The reaction is operationally simple and broad in scope while providing succinct and scalable avenues to previously reported synthetic intermediates.  相似文献   

4.
The development of a new decarboxylative cross‐coupling method that affords terminal and substituted alkynes from various carboxylic acids is described using both nickel‐ and iron‐based catalysts. The use of N‐hydroxytetrachlorophthalimide (TCNHPI) esters is crucial to the success of the transformation, and the reaction is amenable to in situ carboxylic acid activation. Additionally, an inexpensive, commercially available alkyne source is employed in this formal homologation process that serves as a surrogate for other well‐established alkyne syntheses. The reaction is operationally simple and broad in scope while providing succinct and scalable avenues to previously reported synthetic intermediates.  相似文献   

5.
Self‐assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur‐based self‐assembled monolayers and newly developed selenium‐based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.  相似文献   

6.
《中国化学快报》2020,31(12):3276-3278
Selenized glucose can be easily prepared via the selenization reaction of glucose using in situ generated NaHSe as the selenization reagent. The technique has been industrialized to produce the chemical in kilogram scale, making it an easily available material in laboratory presently. The selenized glucose may be widely used as the starting material for the preparation of selenium-containing catalysts, as the organoselenium additive for feeds, and as the efficient selenium-enriched foliar fertilizers. In this work, we found that treating Fusarium graminearum, a fungal pathogen inciting wheat scab disease, with selenium glucose could significantly inhibit the generation of the deoxynivalenol (DON) toxin, which might be a breakthrough for reducing the detriment of the wheat scab disease.  相似文献   

7.
A systematic theoretical study of geminal and vicinal 77Se–13C spin–spin coupling constants in the series of the open‐chain selenides and selenium‐containing heterocycles revealed that relativistic effects play an essential role in the selenium–carbon coupling mechanism, especially when the coupling pathway includes a triple bond, contributing to about 10–15% of their total values and noticeably improving the agreement of the calculated couplings with experiment. Both geminal and vicinal 77Se–13C spin–spin coupling constants show marked stereochemical behavior as documented by their calculated dihedral angle dependence that could be used as a practical guide in stereochemical studies of organoselenium compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The synthesis of complex alkyl boronic esters through conjunctive cross‐coupling of vinyl boronic esters with carboxylic acids and aryl iodides is described. The reaction proceeds under mild metallaphotoredox conditions and involves an unprecedented decarboxylative radical addition/cross‐coupling cascade of vinyl boronic esters. Excellent functional‐group tolerance is displayed, and application of a range of carboxylic acids, including secondary α‐amino acids, and aryl iodides provides efficient access to highly functionalized alkyl boronic esters. The decarboxylative conjunctive cross‐coupling was also applied to the synthesis of sedum alkaloids.  相似文献   

9.
This paper describes a palladium/copper‐catalyzed decarboxylative coupling of aryl iodides with α‐oxocarboxylates. The cross‐coupling reaction gives high chemical yields of aryl ketones and has wide functional group tolerance, making the transformation an attractive alternative to the traditional cross‐coupling approaches for aryl ketones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross‐coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross‐coupling partners without the need of co‐catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   

11.
Reported is the stereospecific cross‐coupling of anomeric stannanes with symmetrical diselenides, resulting in the synthesis of selenoglycosides with exclusive anomeric control. The reaction proceeds without the need for directing groups and is compatible with free hydroxy groups as demonstrated in the preparation of glycoconjugates derived from mono‐, di‐, and trisaccharides and peptides (35 examples). Given its generality and broad substrate scope, the glycosyl cross‐coupling method presented herein can find use in the synthesis of selenium‐containing glycomimetics and glycoconjugates.  相似文献   

12.
A visible light‐induced decarboxylative alkylation of heterocyclic aromatics with aliphatic carboxylic acids was developed by using anthocyanins as a photocatalyst under mild conditions. A series of alkylated heterocyclic compounds were obtained in moderate to good yields by using the metal‐free decarboxylative coupling reaction under blue light. This strategy uses cheap and readily available carboxylic acids as alkylation reagents with good functional group tolerance and environmental friendliness. It is worth noting that this is the first time that anthocyanin has been used to catalyze the Minisci‐type C?H alkylation. The mechanism of decarboxylation alkylation was studied by capturing the adduct of alkyl radical and hydroquinone, thus confirming a radical mechanism. This protocol provides an alternative visible light‐induced decarboxylative alkylation for the functionalization of heterocyclic aromatics.  相似文献   

13.
Palladium‐supported catalysts are complex assemblies with a challenging preparation. Minor changes in their preparation conditions can affect the activity, selectivity and lifetime of these catalysts. PdCuFe nanoparticle (NP) thin films were supported on reduced graphene oxide (RGO) by the reduction of the organometallic complex [PdCl2‌(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), and [Cu(acac)2] and [Fe(acac)3] (acac = acetylacetonate) complexes at a toluene–water interface. We have investigated the application of the liquid–liquid interface method for preparing ultrathin films of catalysts and have evaluated the catalytic activity of the prepared NPs for the Sonogashira coupling reaction in micelle media. Also, we have investigated the effect of the addition of iron on the morphology, size and catalytic activity of PdCu/RGO NPs. Our study shows that both of the prepared catalysts (PdCu/RGO and PdCuFe/RGO) are efficient and recoverable catalysts for the Sonogashira carbon–carbon coupling reaction. This method has advantages compared to other routes, such as short reaction times, high to excellent yields, facile and low‐cost method for the preparation of the catalysts, and easy separation and reusability of the catalysts.  相似文献   

14.
A copper‐mediated decarboxylative coupling of benzamides with ortho ‐nitrobenzoic acids by 8‐aminoquinoline‐directed C−H cleavage has been developed. This reaction proceeds smoothly with only a copper salt to produce the corresponding biaryl compounds in good yields. The products can be easily transformed into various nitrogen‐containing heterocyclic compounds. Moreover, the combination of copper and a suitable base promotes a decarboxylative C−H arylation and cyclization sequence to deliver phenanthridinone derivatives in one pot.  相似文献   

15.
Application of the Suzuki cross‐coupling reaction for efficient synthesis of diverse substituted biaryl‐chromen‐4‐ones using an optimized palladium(0) catalyst system is reported. The coupling of arylboronic acids with the resin‐bound bromoflavanones which were prepared by organoselenium‐induced regioselective intramolecular cyclization of bromo‐2‐hydroxylchalcones proceeded smoothly. Biaryl‐chromen‐4‐ones were synthesized by subsequent selenoxide syn‐elimination in good total yields.  相似文献   

16.
A cobalt‐catalyzed decarboxylative Negishi coupling reaction of redox‐active aliphatic esters with organozinc reagents was developed. The method enabled efficient alkyl–aryl, alkyl–alkenyl, and alkyl–alkynyl coupling reactions under mild reaction conditions with no external ligand or additive needed. The success of an in situ activation protocol and the facile synthesis of the drug molecule (±)‐preclamol highlight the synthetic potential of this method. Mechanistic studies indicated that a radical mechanism is involved.  相似文献   

17.
The organocatalytic enantioselective decarboxylative Mannich reaction of malonic acid half thioesters (MAHTs) with cyclic N‐sulfonyl ketimines by using N‐heteroarenesulfonyl cinchona alkaloid amides afforded products with high enantioselectivity. Both enantiomers of the products could be obtained by using pseudoenantiomeric chiral catalysts. The reaction proceeds through a nucleophilic addition of the MAHTs to the ketimines prior to decarboxylation.  相似文献   

18.
A transition‐metal‐free formal decarboxylative coupling reaction between α‐oxocarboxylates and α‐bromoketones to synthesize 1,3‐diketone derivatives is presented. In this reaction, a broad scope of substrates can be employed, and neither a metal‐based reagent nor an additional base is required. DFT calculations reveal that this reaction proceeds through a coupling followed by decarboxylation mechanism and the α‐bromoketone unprecedentedly serves as a nucleophile under neutral conditions. The rate‐determining step is an unusual hydrogen‐bond‐assisted enolate formation by thermolysis.  相似文献   

19.
Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.  相似文献   

20.
The decarboxylative coupling of a carboxylic acid with an amine nucleophile provides an alternative to the substitution of traditional organohalide coupling partners. Benzoic and alkynyl acids may be directly aminated by oxidative catalysis. In contrast, methods for intermolecular alkyl carboxylic acid to amine conversion, including amidate rearrangements and photoredox‐promoted approaches, require stoichiometric activation of the acid unit to generate isocyanate or radical intermediates. Reported here is a process for the direct chemoselective decarboxylative amination of electron‐poor arylacetates by oxidative Cu catalysis. The reaction proceeds at (or near) room temperature, uses native carboxylic acid starting materials, and is compatible with protic, electrophilic, and other potentially complicating functionality. Mechanistic studies support a pathway in which ionic decarboxylation of the acid generates a benzylic nucleophile which is aminated in a Chan–Evans–Lam‐type process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号