首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bimetallic three‐dimensional amorphous mesoporous materials, Al‐Zr‐TUD‐1 materials, were synthesised by using a surfactant‐free, one‐pot procedure employing triethanolamine (TEA) as a complexing reagent. The amount of aluminium and zirconium was varied in order to study the effect of these metals on the Brønsted and Lewis acidity, as well as on the resulting catalytic activity of the material. The materials were characterised by various techniques, including elemental analysis, X‐ray diffraction, high‐resolution TEM, N2 physisorption, temperature‐programmed desorption (TPD) of NH3, and 27Al MAS NMR, XPS and FT‐IR spectroscopy using pyridine and CO as probe molecules. Al‐Zr‐TUD‐1 materials are mesoporous with surface areas ranging from 700–900 m2 g?1, an average pore size of around 4 nm and a pore volume of around 0.70 cm3 g?1. The synthesised Al‐Zr‐TUD‐1 materials were tested as catalyst materials in the Lewis acid catalysed Meerwein–Ponndorf–Verley reduction of 4‐tert‐butylcyclohexanone, the intermolecular Prins synthesis of nopol and in the intramolecular Prins cyclisation of citronellal. Although Al‐Zr‐TUD‐1 catalysts possess a lower amount of acid sites than their monometallic counterparts, according to TPD of NH3, these materials outperformed those of the monometallic Al‐TUD‐1 as well as Zr‐TUD‐1 in the Prins cyclisation of citronellal. This proves the existence of synergistic properties of Al‐Zr‐TUD‐1. Due to the intramolecular nature of the Prins cyclisation of citronellal, the hydrophilic surface of the catalyst as well as the presence of both Brønsted and Lewis acid sites synergy could be obtained with bimetallic Al‐Zr‐TUD‐1. Besides spectroscopic investigation of the active sites of the catalyst material a thorough testing of the catalyst in different types of reactions is crucial in identifying its specific active sites.  相似文献   

2.
A better understanding of the deactivation processes taking place within solid catalysts is vital to design better ones. However, since inter‐particle heterogeneities are more a rule than an exception, particle sorting is crucial to analyse single catalyst particles in detail. Microfluidics offers new possibilities to sort catalysts at the single particle level. Herein, we report a first‐of‐its‐kind 3D printed magnetophoretic chip able to sort catalyst particles by their magnetic moment. Fluid catalytic cracking (FCC) particles were separated based on their Fe content. Magnetophoretic sorting shows that large Fe aggregates exist within 20 % of the FCC particles with the highest Fe content. The availability of Brønsted acid sites decreases with increasing Fe content. This work paves the way towards a high‐throughput catalyst diagnostics platform to determine why specific catalyst particles perform better than others.  相似文献   

3.
In this research, a novel organic–inorganic hybrid salt, namely, N1,N1,N2,N2‐tetramethyl‐N1,N2‐bis(sulfo)ethane‐1,2‐diaminium tetrachloroferrate ([TMBSED][FeCl4]2) was prepared and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping, field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), thermal gravimetric (TG), differential thermal gravimetric (DTG), and vibrating‐sample magnetometry (VSM) analyses. Catalytic activity of the hybrid salt was tested for the synthesis of N,N′‐alkylidene bisamides through the reaction of benzamide (2 eq.) and aromatic aldehydes (1 eq.) under solvent‐free conditions in which the products were obtained in high yields and short reaction times. The catalyst was superior to many of the reported catalysts in terms of two or more of these factors: the reaction medium and temperature, yield, time, and turnover frequency (TOF). [TMBSED][FeCl4]2 is a Brønsted–Lewis acidic catalyst; there are two SO3H groups (as Brønsted acidic sites) and two tetrachloroferrate anions (as Lewis acidic sites) in its structure. Highly effectiveness of the catalyst for the synthesis of N,N′‐alkylidene bisamides can be attributed to synergy of the Brønsted and Lewis acids and also possessing two sites of each acid.  相似文献   

4.
固相研磨法是将不同量的活性组分掺入到介孔材料上的一种简单有效的方法.采用该法以焙烧脱模前后的SBA-15为载体分别制备了不同负载量的CuO-SBA-15吸附剂.利用X射线衍射(XRD)、N2物理吸附、傅里叶变换红外(FTIR)等方法表征了吸附剂的物理性质.通过原位红外技术考察了改性前后介孔材料表面羟基的变化.借助吡啶-原位傅里叶变换红外(py-FTIR)技术考察了吸附剂表面的酸类型及相对酸量.采用静态吸附实验评价了吸附剂对催化裂化(FCC)燃料油的吸附脱硫性能.结果表明:CuO是与SBA-15表面的Si―OH结合形成[Si-O-Cu-O-Si]交联从而达到分散的目的;以SBA-15介孔材料(APS)为载体能够有效抑制在焙烧过程中介孔材料表面羟基的缩合,且CuO负载量达到3mmo·lg-1时仍能够均匀分散在载体SBA-15上,而采用焙烧脱模的SBA-15(CS)为载体制备的CuO-SBA-15吸附剂却出现了活性组分团聚现象;吸附剂的酸性与脱硫性能均随着CuO的增加出现先增加后降低的趋势,当CuO负载量达到3mmo·lg-1时吸附剂具有最高的Lewis酸(L酸)酸量及最佳的脱硫性能;吸附剂的L酸酸量与其脱硫性能成正相关关系;另外吸附剂的L酸的形成是由于改性后Cu周围的电荷密度降低引起的.  相似文献   

5.
赵欣  黄垒  李红蕊  扈航  韩瑾  施利毅  张登松 《催化学报》2015,(11):1886-1899
选择性催化还原(SCR)是目前固定源及移动源中控制NOx排放最为有效的技术手段之一.工业上应用最广泛的商业SCR催化剂是钒基催化剂.钒基催化剂经钨(钼)改性后具有较好的活性、稳定性和抗水抗硫性能,但在应用过程中仍存在N2选择性较低、活性温度窗口(300–400 oC)较窄及高温下V2O5极易流失等不足,且钨(钼)的价格十分昂贵.因此,用廉价组分提高钒基催化剂的催化性能在实际工业应用中仍具有重要意义.研究发现,很多非贵金属(如Cu, Fe, Mn, Co, Ce, Zr, Nb, Sn, La等)都可以代替钨(钼)用来提高钒基催化剂的选择性、活性温度窗口和(热)稳定性能等.引入的金属通常以氧化物或钒酸盐形式存在,并与活性组分钒物种有很强的相互作用,从而提高钒物种的氧化还原性能及分散度,同时增大表面酸性位数量,抑制锐钛矿向金红石相转变.近年来很多研究发现,经金属改性的钒基催化剂以钒酸盐形式存在时可有效提高催化剂活性和 N2选择性,尤其可显著提高催化剂的(热)稳定性.本文采用浸渍法以廉价易得、储量丰富的过渡金属改性钒基催化剂,得到高度分散的M-V/TiO2(M = Cu, Fe, Mn, Co)脱硝催化剂.结果发现, Cu-V/TiO2和Fe-V/TiO2催化剂表现出较好的催化活性和N2选择性以及优异的稳定性和抗H2O/SO2性能,其中Cu-V/TiO2的工作温度窗口扩展到225–375oC. X射线衍射、拉曼光谱和EDX-mapping表征结果证明,钒物种及引入的金属高度分散在TiO2载体表面,并生成了钒酸盐.氢气程序升温还原结果表明,钒酸盐的形成导致钒物种的还原峰向低温区移动,有利于催化剂氧化还原性能的提升. X射线光电子能谱结果表明, Cu-V/TiO2催化剂表面具有更多的活性氧物种(Oα),且具有较强的电子间相互作用,是SCR活性提高的关键原因之一. NH3程序升温脱附和原位红外光谱实验结果表明,金属的引入可以提高酸量和酸强度; Cu-V/TiO2催化剂表面主要为Lewis酸性位,而Fe-V/TiO2催化剂表面主要为Br?nsted酸性位,两者可能导致不同的SCR反应机理,但均可以提高催化剂在高温下的N2选择性.综上所述,过渡金属改性的钒基催化剂中Cu-V/TiO2具有最好的活性和N2选择性以及较强的稳定性和抗H2O/SO2性能,可能得益于其表面更多的活性氧物种和更多更强的酸性位.  相似文献   

6.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

7.
以硝酸锆、硝酸铜和硝酸钴为金属源,过硫酸铵作为浸渍液,采用共沉淀浸渍法合成出固体超强酸催化剂S2O82-/ZrO2、S2O82-/ZrO2-CuO和S2O82-/ZrO2-CoO,通过XRD、FT-IR、NH3-TPD、BET对催化剂进行表征。结果表明,Co(钴)改性催化剂S2O82-/ZrO2-CoO在三种催化剂中超强酸位最多。将其作为催化剂,过氧化氢作为氧化剂用于FCC汽油氧化脱硫反应,研究不同反应温度、催化剂用量、反应时间、氧化剂用量对FCC汽油脱硫效果的影响。结果表明,FCC汽油氧化脱硫的最佳条件为:反应温度70 ℃,反应1.5 h,FCC汽油加入量与氧化剂体积比7.5:1,催化剂用量0.02 g/mL。反应产物利用N,N-二甲基甲酰胺进行萃取分离,萃取剂/汽油体积比为1:1时,FCC汽油脱硫率最高可达85.34%,回收率为94.45%,并且催化剂表现出较为稳定的催化活性。  相似文献   

8.
Fluid catalytic cracking (FCC) spent catalysts are the most common catalysts produced by the petroleum refining industry in China. The National Hazardous Waste List (2016 edition) lists FCC spent catalysts as hazardous waste, but this listing is very controversial in the petroleum refining industry. This study collects samples of waste catalysts from seven domestic catalytic cracking units without antimony-based passivation agents and identifies their hazardous characteristics. FCC spent catalysts do not have the characteristics of flammability, corrosiveness, reactivity, or infectivity. Based on our analysis of the components and production process of the FCC spent catalysts, we focused on the hazardous characteristic of toxicity. Our results show that the leaching toxicity of the heavy metal pollutants nickel, copper, lead, and zinc in the FCC spent catalyst samples did not exceed the hazardous waste identification standards. Assuming that the standards for antimony and vanadium leachate are 100 times higher than that of the surface water and groundwater environmental quality standards, the leaching concentration of antimony and vanadium in the FCC spent catalyst of the G set of installations exceeds the standard, which may affect the environmental quality of surface water or groundwater. The quantities of toxic substances in all spent FCC catalysts, except those from G2, does not exceed the standard. The acute toxicity of FCC spent catalysts in all installations does not exceed the standard. Therefore, we exclude “waste catalysts from catalytic cracking units without antimony-based passivating agent passivation nickel agent” from the “National Hazardous Waste List.”  相似文献   

9.
采用混捏法制备了以金属氧化物、黏土及分子筛为载体的三类镍基氧化锌吸附剂,采用FT-IR等分析手段进行表征,探讨了其物化性能的差异,并利用微型固定床反应器考察了上述吸附剂对噻吩的吸附脱除性能。结果表明,不同吸附剂对噻吩的吸附效果不同,黏土载体的吸附剂脱硫性能高于金属氧化物载体的脱硫性能,吸附剂的脱硫活性顺序依次为cay-sorb>diatomite-sorb>Al-sorb>Ti-sorb。利用FT-IR对吸附剂的表面酸性进行了表征。结果表明,吸附剂的脱硫性能与其总L酸量有关,总L酸量高的吸附剂脱硫效果较好。分子筛载体吸附剂的脱硫活性顺序依次为MCM-22-sorb>HY-sorb≥Hβ-sorb>H-mordenite-sorb>HZSM-5-sorb。通过比较分子筛载体的孔道结构表明,分子筛载体孔径大小是影响吸附剂脱硫性能的主要因素。  相似文献   

10.
Bimetallic Fe‐V‐HMS (HMS, hexagonal mesoporous silica) catalysts with various molar ratios of iron to vanadium were synthesized using a co‐synthesis method, and investigated for oxidative desulfurization of dibenzothiophene (DBT) using tert‐butyl hydroperoxide as an oxidant. The catalysts were characterized using X‐ray diffraction, temperature‐programmed desorption of ammonia, Fourier transform infrared spectroscopy and N2 physical adsorption–desorption techniques. The Fe‐V‐HMS catalyst with a 2:1 molar ratio of iron to vanadium exhibited the highest total acidity and the highest catalytic activity. DBT was almost completely oxidized to dibenzothiophenesulfone, a species with a higher polarity that could be subsequently adsorbed on the Fe‐V‐HMS, and therefore the Fe‐V‐HMS acts as both a catalyst and an adsorbent simultaneously. The desulfurization rate was 98.1%. A pseudo‐first‐order model was fitted to the experimental data, and the activation energy was found to be 38.79 kJ mol?1. The encouraging performance of Fe‐V‐HMS offers the prospect of the design of a one‐pot oxidative desulfurization process without needing extraction of sulfones from fuel oil with a chemical solvent.  相似文献   

11.
A time‐resolved in situ micro‐spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid‐catalytic‐cracking (FCC) catalysts at the single particle level by applying the acid‐catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components (zeolite, clay, alumina and silica) was monitored by UV/Vis micro‐spectroscopy and showed that only clay and zeolites (Y and ZSM‐5) contain Brønsted acid sites that are strong enough to catalyse the conversion of 4‐fluorostyrene into carbocationic species. By applying the same approach to complete FCC catalyst particles, it has been found that the fingerprint of the zeolitic UV/Vis spectra is clearly recognisable. This almost exclusive zeolitic activity is confirmed by the fact that hardly any reactivity is observed for FCC particles that contain no zeolite. Confocal fluorescence microscopy images of FCC catalyst particles reveal inhomogeneously distributed micron‐sized zeolite domains with a highly fluorescent signal upon reaction. By examining laboratory deactivated FCC catalyst particles in a statistical approach, a clear trend of decreasing fluorescence intensity, and thus Brønsted acidity, of the zeolite domains is observed with increasing severity of the deactivation method. By comparing the average fluorescence intensities obtained with two styrenes that differ in reactivity, it has been found that the Brønsted acid site strength within FCC catalyst particles containing ZSM‐5 is more uniform than within those containing zeolite Y, as confirmed with temperature‐programmed desorption of ammonia.  相似文献   

12.
The Beckmann rearrangement of cyclohexanone oxime (CHO) to ?‐caprolactam (?‐C) was studied in a plug flow reactor at 300–400°C under atmospheric pressure by using Hβ, ZSM‐5, and alumina pillared montmorillonite. With Hβ(X) Y zeolites, raising the SiO2/Al2O3 molar ratio (X) results in the enhancement of catalyst acid strength with concomitant decrease of the total acid amount. In creasing the calcination temperature (Y) causes remarkable diminution of catalyst surface area, acid strength, and acid amount. A similar trend was found for AlPMY catalysts. In there action of CHO, the initial catalytic activity correlates well with the total acid amount of various catalysts except for Hβ(10) Y (Y > 600°C). The reaction proceeds on both Brönsted and Lewis acid sites and the catalyst deactivation most likely occurs at the strong Brönsted acid sites. The effect of solvents in the feed on the catalytic results was also investigated; it was found that polar solvents such as ethanol or n‐butanol give high ?‐C yield and longer catalyst life time. In the reaction of CHO/C2H5OH over Hβ(10)800 at 400°C and W/F 74.6 gh/mol, the CHO conversion and ?‐C yield remain 100% and 92%, respectively, for at least 20 h time‐on‐stream. The reaction paths and the mechanism for ?‐C formation are proposed.  相似文献   

13.
Two series of Co and Ni based catalysts supported over commercial (ZrO2, CeO2, and Al2O3) nano supports were investigated for dry reforming of methane. The catalytic activity of both Co and Ni based catalysts were assessed at different reaction temperatures ranging from 500—800 °C; however, for stability the time on stream experiments were conducted at 700 °C for 6 h. Various techniques such as N2 adsorption‐desorption isotherm, temperature‐programmed reduction (H2‐TPR), temperature‐programmed desorption (CO2‐TPD), temperature‐programmed oxidation (TPO), X‐ray diffraction (XRD), thermogravimetric analysis (TGA) were applied for characterization of fresh and spent catalysts. The catalytic activity and stability tests clearly showed that the performance of catalyst is strongly dependent on type of active metal and support. Furthermore, active metal particle size and Lewis basicity are key factors which have significant influence on catalytic performance. The results indicated that Ni supported over nano ZrO2 exhibited highest activity among all tested catalysts due to its unique properties including thermal stability and reducibility. The minimum carbon deposition and thus relatively stable performance was observed in case of Co‐Al catalyst, since this catalyst has shown highest Lewis basicity.  相似文献   

14.
通过添加不同含量的F对Hβ分子筛进行改性,制备Mo-Ni/F-Hβ催化剂,采用N2吸附-脱附、NH3-TPD、XRD、Py-FTIR和SEM等方法对该催化剂进行了表征,研究了F改性对该Mo-Ni/F-Hβ催化剂在FCC汽油中硫醇醚化和噻吩烷基化等硫转移反应中催化性能的影响。结果表明,以0.5%含量F修饰的β分子筛制备的催化剂对硫醚化反应和噻吩烷基化反应具有明显的促进作用,并能提高对二烯烃选择性加氢的选择性。F的引入可增强Hβ分子筛的中强酸量,降低强酸量,并提高了L/B酸中心比例,这些变化对催化性能改善起到重要作用。  相似文献   

15.
Sn改性TS-1分子筛催化苯酚和草酸二甲酯合成草酸二苯酯   总被引:2,自引:0,他引:2  
郭宏利  王胜平  马新宾   《催化学报》2003,24(6):423-427
 使用Sn改性的TS-1分子筛催化苯酚和草酸二甲酯的酯交换反应合成草酸二苯酯,深入研究了不同Sn负载量TS-1分子筛的结构及催化性能.实验结果表明,由于Sn和以Ti-O-SiO3为中心的弱Lewis酸的协同催化作用,与未改性的TS-1分子筛催化剂相比,改性后的催化剂虽 然Lewis酸量有明显下降,但催化剂的催化性能明显提高.当Sn的负载量为2%时,草酸二甲酯的转化率达到50.3%,目的产物的选择性为99.2%.利用X射线衍射、X射线光电子能谱和X射线能量分散谱考察了Sn在TS-1分子筛表面的结构和分散状态及其与酯交换反应催化性能的关系.结果表明,当Sn的负载量低于2%时,SnO2以非晶态形式分散在TS-1表面;而当Sn负载量高于2%时,SnO2以微晶的形式存在,此时Sn原子与Ti原子的协同作用已经不明显,催化剂的催化性能反而下降.  相似文献   

16.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

17.
以ZnO-TiO2为载体,采用等体积浸渍法制备了不同Ni含量的NiO/ZnO-TiO2汽油脱硫吸附剂。采用X射线衍射(XRD)、压汞、H2程序升温还原(H2-TPR)和H2程序升温脱附(H2-TPD)等手段对吸附剂进行了表征。同时,采用FCC轻汽油为原料,在固定床反应装置中对不同Ni含量的NiO/ZnO-TiO2吸附剂进行脱硫性能评价,以考察Ni含量对该吸附剂脱硫性能的影响。结果表明,Ni含量适量增加对于吸附剂比表面积、内部孔道分布和颗粒强度影响较小,同时能够增加具有脱硫活性的Ni0物种,促进吸附剂脱硫活性。当吸附剂中Ni质量分数达到5.48%后,吸附剂的内部孔道分布改变,吸附剂的比表面积和颗粒强度明显降低,对吸附剂脱硫活性极为不利。当Ni质量分数为4.45%时,吸附剂具有最佳脱硫性能,能够将FCC轻汽油中3×10-4的总硫含量降低至5×10-6以下,并维持脱硫时间达152 h,穿透硫容达11.24%(112.4 mg S/g吸附剂),且脱硫后FCC轻汽油烯烃含量变化较小。  相似文献   

18.
While water‐compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self‐assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water‐compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C? C bond‐forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions.  相似文献   

19.
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.  相似文献   

20.
Metal–organic framework (MOF)‐derived Co‐N‐C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co‐N‐C catalyst achieves superior activity, better acid resistance, and improved long‐term stability compared with nanoparticles synthesized by a similar route. High‐angle annular dark‐field–scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and X‐ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low‐cost catalyst is a promising candidate for liquid H2 generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号