首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation, characterization and catalytic application of Co (III) salen complex loaded on cobalt ferrite‐silica nanoparticle [CoFe2O4@SiO2@ Co (III) salen complex] are described. Co (III) salen complex loaded on ferrite cobalt‐silica nanoparticles is characterized by transmission electron microscopy, scanning electron microscopy coupled with energy‐dispersive X‐ray, vibrating‐sample magnetometer and Fourier transform‐infrared analyses. The thermal stability of the material is also determined by thermal gravimetric analysis. An average crystallite size is determined from the full‐width at half‐maximum of the strongest reflection by using Scherrer's approximation by powder X‐ray diffractometry. The efficiency of CoFe2O4@SiO2@Co (III) salen complex is investigated in the synthesis of spirooxindoles of malononitrile, various isatins with 1,3‐dicarbonyles. The nanocatalyst demonstrated excellent catalytic activity that gave the corresponding coupling products in good to excellent yields. Moreover, the recoverability and reusability of CoFe2O4@SiO2@Co (III) salen complex is investigated where nanocatalyst could be recovered and reused at least five times without any appreciable decrease in activity and selectivity, which confirmed its high efficiency and high stability under the reaction conditions and during recycling stages.  相似文献   

2.
In the presence of cobalt (III) salen complex, selective oxidation of alcohols to carbonyl compounds was studied by molecular oxygen using isobutyraldehyde as an oxygen acceptor. The effect of cobalt (III) salen complex in the oxidation reaction was studied, and the results showed that Co (III) salen complex is very active and selective in the oxidation of various alcohols. Also, the effect of important factors including catalyst amount, solvent and temperature was investigated on the reaction. Furthermore, the catalytic activities of CoFe2O4@SiO2‐supported Schiff base metal complex as well as the effect of molecular oxygen (O2) as a green oxidant were studied. The results showed that benzaldehyde was the major product and the heterogeneous catalyst was highly reusable.  相似文献   

3.
A magnetically heterogeneous CoFe2O4@SiO2-NH2-CoII nanoparticle was synthesized by the immobilization of Co (II) complex onto CoFe2O4@SiO2 nanoparticles, and the heterogeneous magnetic nanocatalyst was characterized by XRD, TEM, TGA, EDX, and FT-IR techniques. Then, the green and reusable method was introduced for a multicomponent synthesis of 1,4-dihydropyridine derivatives via Hantszch reaction. The synthesis of 1,4-dihydropyridine derivatives was proceeded by the reaction of aldehyde, ethyl acetoacetate, and ammonium acetate in the presence of this magnetic nanocatalyst in EtOH/Water (1:1). Simple work-up, short reaction times, excellent yields (60–96%) as well as green solvent are some advantages of this novel approach, and the corresponding products were purified with no need for chromatographic separation.  相似文献   

4.
我们将N-乙酰-L-半胱氨酸(NALC)修饰于ZnFe2O4@SiO2纳米材料表面,制备了一种新型的手性纳米复合物(ZnFe2O4@SiO2-NALC),该材料能够简便、快速及高选择性地识别手性酪氨酸(Tyr)对映体。利用X射线粉末衍射(XRD)、红外光谱(FT-IR)、能量色散X射线光谱(EDS)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)和振动样品磁力计(VSM)等一系列表征手段对首次合成出的ZnFe2O4@SiO2-NALC进行测试表征,并将其应用于对手性识别领域的探究。实验结果表明,利用光谱技术(紫外-可见光谱和荧光光谱),ZnFe2O4@SiO2-NALC可对Tyr对映异构体进行手性识别。此外,我们进一步对Tyr浓度和pH值等实验参数进行了优化。  相似文献   

5.
A manganese(III) complex, [Mn(phox)2(CH3OH)2]ClO4 (phox?=?2-(2′-hydroxyphenyl)oxazoline), was immobilized on silica-coated magnetic Fe3O4 nanoparticles through the amino propyl linkage using a grafting process in dichloromethane. The resulting Fe3O4@SiO2–NH2@Mn(III) nanoparticles are used as efficient and recyclable catalysts for selective oxidation of thiols to disulfides using urea-hydrogen peroxide as the oxidant. The nanocatalyst was recycled several times. Leaching and recycling experiments revealed that the nanocatalyst can be recovered, recycled, and reused more than five times, without the loss of catalytic activity and magnetic properties. The recycling of the nanocatalyst in six consecutive runs afforded a total turnover number of more than 10,000. The heterogeneous Fe3O4@SiO2–NH2@Mn(III) nanoparticle shows more selectivity for the formation of disulfides in comparison with the homogeneous manganese complex.  相似文献   

6.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

7.
8.
A new high efficient and green protocol for the preparation of dihydropyrimido[4,5‐b]quinolinetrione derivatives using magnetically solid acid catalyst was presented. High performance solid acid catalyst was prepared through a three‐step reaction. Firstly, CoFe2O4 nano particles were synthesized using co‐precipitation method. In second step, CoFe2O4 nano particles were coated with SiO2 shell through treatment with tetraethyl orthosilicate (CoFe2O4@SiO2). Finaly, CoFe2O4@SiO2 was modified with polyphosphoric acid (CoFe2O4@SiO2/PPA) in a simple manner. Green reusable catalyst was characterized in details using FTIR, VSM, TEM, FESEM, EDX and used as catalyst for the synthesis of dihydropyrimido[4,5‐b]quinolinetrione derivatives. Reaction was performed under ultrasonic irradiation as green, effective and mild conditions and products were achieved in high to excellent yields. Green and eco‐friendly conditions, short reaction times with high yield of products in addition to easy workup are some merits of presented method.  相似文献   

9.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

10.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

11.
In this study, CoFe2O4/Sawdust and NiFe2O4/Sawdust magnetic nanocomposites were synthesized using a hydrothermal method, and then characterized using X-ray powder diffraction, Infrared, scanning electron microscopy, Brunauer–Emmett–Teller/Barrett–Joyner–Halenda, and vibrating-sample magnetometer techniques. In this study, unmodified sawdust (US), modified sawdust (MS), unmodified CoFe2O4/sawdust (UCS), modified CoFe2O4/sawdust (MCS), unmodified NiFe2O4/sawdust (UNS), and modified NiFe2O4/Sawdust (MNS) magnetic nanocomposites, which are inexpensive, economical, environmentally friendly absorbents, and have a high selective hydrophobic, were used for the removal of oil from the water surface. The results show that the UCS, MCS, UNS, and MNS magnetic nanocomposites can selectively absorb the oil spreading on the water surface, due to its superhydrophobicity and superoleophilicity, and can be easily collected from water under the influence of a magnetic field. In addition, the results showed that the absorbents reach their equilibrium at the 30-min mark. Among all the absorbents, the MNS magnetic nanocomposite showed the maximum absorption capacity (18.172 g/g) at the 40-min mark. The results of the kinetic studies showed that the second-order kinetic equation with the highest correlation coefficient had the best fit with the experimental results.  相似文献   

12.
A new and efficient procedure for the synthesis of 3,5-disubstituted-2,6-dicyanoaniline derivatives by CoFe2O4@SiO2-PA-CC-guanidine magnetic nanoparticles (MNPs) was reported. 3,5-Disubstituted-2,6-dicyanoaniline derivatives were synthesized from malononitrile, aldehydes, and β-nitrostyrene derivatives in good yields. MNPs used for the synthesis of aniline derivatives were easy to recover and reuse. The CoFe2O4@SiO2-PA-CC-guanidine MNPs were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and vibration sample magnetometry techniques.  相似文献   

13.
A new magnetic metal–organic framework nanocomposite (CoFe2O4/TMU‐17‐NH2) was prepared via an embedding approach by synthesis of the metal–organic framework crystals in the presence of magnetic cobalt ferrite nanoparticles. We demonstrated that the resulting magnetic nanocomposite can serve as a recyclable nanocatalyst for one‐pot synthesis of bis‐3,4‐dihydropyrimidin‐2(1H)‐one and 3,4‐dihydropyrimidin‐2(1H)‐one derivatives via three‐component reaction of 1,3‐diketone, urea or thiourea and aromatic aldehyde under solvent‐free conditions. CoFe2O4/TMU‐17‐NH2 was characterized using various techniques. The recovery of the nanocomposite was achieved by a simple magnetic decantation and it was reused at least seven times without significant degradation in catalytic activity.  相似文献   

14.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

15.
《中国化学会会志》2017,64(12):1446-1459
Silicon oxide was initially loaded on a Fe3O4 magnetic nanoparticle substrate (Fe3O4@SiO2) and then functionalized with ─NH2 group (Fe3O4@SiO2@NH2) to construct a novel hierarchical magnetic nanocomposite. A sensitive urea biosensor medium involving a dip‐coated hierarchical magnetic nanocomposite on F‐doped SnO2 conducting glass was designed (Fe3O4@SiO2@NH2/SnO2:F) to achieve an excellent platform for urease (Urs) enzyme immobilization via covalent linking to the exposed NH2 groups through glutaraldehyde (Urs/Fe3O4@SiO2@NH2/SnO2:F). The hierarchical magnetic nanocomposite selection criteria were based on enhancement of urea biosensing by Urs immobilization via covalent linking to the exposed NH2 groups, while the SnO2:F selection as substrate was based on its ability to afford high electronic density to the biosensor surface as an electrostatic repulsion layer for the anionic interferents in the biological environment. FE‐SEM, TEM, FTIR, CV, EIS, and I–V techniques established the morphology of the modified electrode's surface and electrochemical behavior of urea on the fabricated Urs/Fe3O4@SiO2@NH2/SnO2:F biosensor. The sensing mechanism can be clarified on the basis of the two reactions, namely (1) catalytic reaction and (2) oxidation or reduction of metal oxides, same as in the case of solid‐state gas sensors. The I–V results display high sensitivity for urea detection of within 5–210 mg/dL and a limit of detection of 3 mg/dL.  相似文献   

16.
A highly porous metal‐organic framework, MIL‐101(Fe), was prepared by a solvothermal method in the presence of amino‐modified Fe3O4@SiO2 nanoparticles, in order to achieve Fe3O4/MIL‐101(Fe) nanocomposite, which was characterized by XRD, FT‐IR, SEM, TEM, BET, and VSM. This hybrid magnetic nanocomposite was employed as heterogeneous catalyst for α‐amino nitriles synthesis through three‐component condensation reaction of aldehydes (ketones), amines, and trimethylsilyl cyanide in EtOH, at room temperature. The recoverability and reusability was admitted for the heterogeneous magnetic catalyst; no significant reduction of catalytic activity was observed even after five consecutive reaction cycles.  相似文献   

17.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

18.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

19.
《Comptes Rendus Chimie》2014,17(2):91-102
In recent years, polyaniline/CoFe2O4 nanocomposites have gained attention because of their wide utilization in optoelectronics and biomedical studies. However, very limited research has been carried out on the anticandidal activity of polyaniline/CoFe2O4 nanocomposite against Candida spp. Thus, the study was designed to investigate the anticandidal potential of PANI/CoFe2O4 nanocomposite against Candida albicans 077. PANI/CoFe2O4 nanocomposite (denoted as “cfPNCs”) was synthesized by polymerization of aniline in the presence of CoFe2O4 nanoparticles. The structural and thermal properties of the synthesized PANI/CoFe2O4 nanocomposite were investigated. It was noteworthy that PANI/CoFe2O4 nanocomposite showed promising anticandidal activity in a dose-dependent manner. Results also showed that the protection of histidine (a ROS quencher) against ROS clearly suggested the implication of ROS in anticandidal activity of PANI/CoFe2O4 nanocomposite. It is encouraging to conclude that PANI/CoFe2O4 nanocomposite bears the potential of their applications in biomedicine, especially nanotherapy for diseases caused by C. albicans.  相似文献   

20.
Dyestuff textile wastewater treatment has become a research hotspot due to its high chroma, poor biodegradability, and low toxicity characteristics. In this paper, we have synthesized magnetic Fe3O4 and core‐shell Fe3O4@SiO2 materials by hydrothermal methods. These materials were characterized by XRD, TEM, N2 adsorption‐desorption and so on. These materials’ heterogeneous Fenton has been applied to dye wastewater treatment. Methylene blue was used as a typical target of dye wastewater. Decolorization ratios of methylene blue were determined by different nanostructure composites catalysts. A serious of results of study showed that decolorization ratios of magnetic nanoparticles and core‐shell composites arrived at above 90 % under the weakly acidic or neutral conditions and room temperature. When these catalysts were reused, the results show that Fe3O4@SiO2 materials were possessed with good cycle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号