首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine, P(C4H3O)3, at 40 °C in the presence of a catalytic amount of Na[Ph2CO] furnishes two triruthenium complexes [Ru3(CO)10{P(C4H3O)3}2] (1) and [Ru3(CO)9{P(C4H3O)3}3] (2) with the ligand coordinated through the phosphorus atom. Treatment of 1 and 2 with Me3NO at 40 °C affords the dinuclear phosphido-bridged complexes [Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}] (3) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}] (4), respectively, that are formed via phosphorus–carbon bond cleavage of a coordinated phosphine followed by coordination of the dissociated furyl moiety to the diruthenium center in a σ,π-alkenyl mode. Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine in refluxing benzene gives, in addition to 3 and 4, low yields of the cyclometallated complex [Ru3(CO)9{μ-η11-P(C4H3O)2(C4H2O)}2] (5). Treatment of 3 with EPh3 (E = P, As, Sb) at room temperature yields the monosubstituted derivatives [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(EPh3)] (E = P, 8; E = As, 9; E = Sb, 10). Similar reactions of 3 with P(C4H3O)3, P(OMe)3 and ButNC yield 4, [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(OMe)3}] (11) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(NCBut)] (12), respectively. The molecular structures of complexes 3, 4 and 8 have been elucidated by single crystal X-ray diffraction studies. Each complex contains a bridging σ,π-alkenyl group and while in 4 the phosphine is bound to the σ-coordinated metal atom, in 8 it is at the π-bound atom. Protonation of 3 and 4 gives the hydride complexes [(μ-H)Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}]+ (6) and [(μ-H)Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}]+ (7), respectively, while heating 3 with dimethylacetylenedicarboxylate (DMAD) in refluxing toluene gives the cyclotrimerization product, C6(CO2Me)6.  相似文献   

2.
Reactions of the open‐cage fullerene C63NO2(Py)(Ph)2 ( 1 ) with [Ru3(CO)12] produce [Ru3(CO)8(μ,η5‐C63NO2(Py)(Ph)2)] ( 2 ), [Ru2H(CO)3(μ,η7‐C63N(Py)(Ph)(C6H4))] ( 3 ), and [Ru(CO)(Py)2(η3‐C63NO2(Py)(Ph)2)] ( 4 ), in which the orifice sizes are modified from 12 to 8, 11, and 15‐membered ring, through ruthenium‐mediated C?O and C?C bond activation and formation.  相似文献   

3.
Synthesis of Carboxylate Substituted Rhenium Gold Metallatetrahedranes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H, Me, CF3, Ph, 3,4-(OMe)2C6H3) The reaction of the in situ prepared salt Li[Re2(μ-H)(μ-PCy2)(CO)7(ax-C(Ph)O)] ( 2 ) with 1,5 equivalents of monocarboxylic acid RCOOH (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e ) in tetrahydrofruan (THF) solution at 60 °C gives within 4 h under release of benzaldehyde (PhCHO) the η1-carboxylate substituted dirhenium salt Li[Re2(μ-H)(μ-PCy2)(CO)71-OC(R)O)] (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e )) in almost quantitative yield. The lower the pKa value of the respective carboxylic acid the faster the reaction proceeds. It was only in the case of CF3COOH possible to prove the formation of the hydroxycarbene complex Re2(μ-H)(μ-PCy2)(CO)7(=C(Ph)OH) ( 5 ) prior to elimination of PhCHO. The new compounds 4 a–4 e were only characterized by 31P NMR and ν(CO) IR spectroscopy as they are only stable in solution. They are converted with two equivalents of BF4AuPPh3 at 0 °C in a so-called cluster expansion reaction into the heterometallic metallatetrahedrane complexes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H ( 7 a ), Me ( 7 b ), CF3 ( 7 c ), Ph ( 7 d ), 3,4-(OMe)2C6H3 ( 7 e )) (yield 47–71% ). The expected precursor complexes of 7 a–7 e Li[Re2(AuPPh3)(μ-PCy2)(CO)71-OC(R)O] ( 8 ) were not detected by NMR and IR spectroscopy in the course of the reaction. Their existence was retrosynthetically proved by the reaction of 7 b with an excess of the chelating base TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) forming [(TBD)xAuPPh3][Re2(AuPPh3)(μ-PCy2)(CO)71-OC(Me)O] ( 8 b ) in solution. The η1-bound carboxylate ligand in 7 a–7 e can photochemically be converted into a μ-bound ligand in Re2(AuPPh3)2(μ-PCy2)(μ-OC(R)O)(CO)6 (R = H ( 9 a ), Me ( 9 b ), CF3 ( 9 c ), Ph ( 9 d ), 3.4-(MeO)2C6H3 ( 9 e )) under release of one equivalent CO. All isolated cluster complexes were characterized and identified by the following analytical methods: elementary analysis, NMR (1H, 31P) spectroscopy, ν(CO) IR spectroscopy and in the case of 7 d and 9 b by X-ray structure analysis.  相似文献   

4.
The Lewis base behavior of μ3‐nitrido ligands of the polynuclear titanium complexes [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] ( 1 ) and [{Ti(η5‐C5Me5)}43‐N)4] ( 2 ) to MX Lewis acids has been observed for the first time. Complex 1 entraps one equivalent of copper(I ) halide or copper(I ) trifluoromethanesulfonate through the basal NH imido groups to give cube‐type adducts [XCu{(μ3‐NH)3Ti35‐C5Me5)33‐N)}] (X=Cl ( 3 ), Br ( 4 ), I ( 5 ), OSO2CF3 ( 6 )). However, the treatment of 1 with an excess (≥2 equiv) of copper reagents afforded complexes [XCu{(μ3‐NH)3Ti35‐C5Me5)34‐N)(CuX)}] (X=Cl ( 7 ), Br ( 8 ), I ( 9 ), OSO2CF3 ( 10 )) by incorporation of an additional CuX fragment at the μ3‐N nitrido apical group. Similarly, the tetranuclear cube‐type nitrido derivative 2 is capable of incorporating one, two, or up to three CuX units at the μ3‐N ligands to give complexes [{Ti(η5‐C5Me5)}43‐N)4?n{(μ4‐N)CuX}n] (X=Br ( 11 ), n=1; X=Cl ( 12 ), n=2; X=OSO2CF3 ( 13 ), n=3). Compound 2 also reacts with silver(I ) trifluoromethanesulfonate (≥1 equiv) to give the adduct [{Ti(η5‐C5Me5)}43‐N)3{(μ4‐N)AgOSO2CF3}] ( 14 ). X‐ray crystal structure determinations have been performed for complexes 8 – 13 . Density functional theory calculations have been carried out to understand the nature and strength of the interactions of [{Ti(η5‐C5H5)(μ‐NH)}33‐N)] ( 1′ ) and [{Ti(η5‐C5H5)}43‐N)4] ( 2′ ) model complexes with copper and silver MX fragments. Although coordination through the three basal NH imido groups is thermodynamically preferred in the case of 1′ , in both complexes the μ3‐nitrido groups act as two‐electron donor Lewis bases to the appropriate Lewis acids.  相似文献   

5.
The reaction of 2-borolenes and 3-borolenes C4H6BR (R = Ph, Me, C6H11, OMe) with Mn, Fe, and Co carbonyls leads to dehydrogenating complexation with formation of simple, i.e. C-unsubstituted (η5-borole)metal complexes. Thus, Mn2(CO)10 gives the triple-decked complexes (μ-η5-C4H4BR)[Mn(CO)3]2 (R = Ph, OMe). By irradiation of Fe(CO)5 the half-sandwich complexes Fe(CO)35-C4H4BR) (R = Ph, Me, C6H11, OMe) are formed, whereas Co2(CO)8 yields the dinuclear complexes (μ-CO)2[Co(CO)(η5-C4H4BR)]2 (Co-Co) (R = Ph, Me). A low-temperature X-ray structure determination of Fe(CO)35-C4H4BPh) is described in detail.  相似文献   

6.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

7.
The trimetallic clusters [Ru3(CO)10(dppm)], [Ru3(CO)12] and [RuCo2(CO)11] react with a number of multifunctional secondary phosphine and tertiary arsine ligands to give products consequent on carbonyl substitution and, in the case of the secondary phosphines, PH activation. The reaction with the unresolved mixed P/S donor, 1-phenylphosphino-2-thio(ethane), HSCH2CH2PHPh ( LH2), gave two products under various conditions which have been characterised by spectroscopic and crystallographic means. These two complexes [Ru3(μ-dppm)(H)(CO)7(LH)] and [Ru3(μ-dppm)(H)(CO)8(LH)Ru3(μ-dppm)(CO)9], show the versatility of the ligand, with it chelating in the former and bridging two Ru3 units in the latter. The stereogenic centres in the molecules gave rise to complicated spectroscopic data which are consistent with the presence of diastereoisomers. In the case of [Ru3(CO)12] the reaction with LH2 gave a poor yield of a tetranuclear butterfly cluster, [Ru4(CO)10(L)2], in which two of the ligands bridge opposite hinge wingtip bonds of the cluster. A related ligand, HSCH2CH2AsMe(C6H4CH2OMe), reacted with [RuCo2(CO)11] to give a low yield of the heterobimetallic Ru-Co adduct, [RuCo(CO)6(SCH2CH2AsMe(C6H4CH2OMe))], which appears to be the only one of its type so far structurally characterised.The secondary phosphine, HPMe(C6H4(CH2OMe)) and its oxide HP(O)Me(C6H4(CH2OMe)) also react with the cluster [Ru3(CO)10(dppm)] to give carbonyl substitution products, [Ru3(CO)5(dppm)(μ2-PMe(C6H4CH2OMe))4], and [Ru3H(CO)7(dppm)(μ21-P(O)Me(C6H4CH2OMe))]. The former consists of an open Ru3 triangle with four phosphide ligands bridging the metal-metal bonds; the latter has the O atom symmetrically bridging one Ru-Ru bond, the P atom being attached to a non-bridged Ru atom.  相似文献   

8.
1,2-Diphenyl-1,2-dimethyldisilanylene-bridged bis-cyclopentadienyl complex[η~5,η~5-C_5H_4PhMeSiSiMePh-C_5H_4]Fe_2(CO)_2(μ-CO)_2(1)was synthesized by a modified procedure,from which the trans-isomer 1b that was pre-viously difficult to obtain has been isolated for the first time.More interestingly,two new regio-isomers[η~5,η~5C_5H_4SiMe(SiMePh_2)C_5H_4]Fe_2(CO)_2(μ-CO)_2(2)and [η~5,η~5-C_5H_4Me_2SiSiPh_2C_5H_4]Fe_2(CO)_2(μ-CO)_2(3)were occa-sionally obtained during above process,the novel structures of which opened up new options for further study ofthis type of Si—Si bond-containing transition metal complexes.The molecular structure of 2 has been determinedby the X-ray diffraction method.  相似文献   

9.
Treatment of Ru3(CO)12 with an equivalent of (2‐phenyl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 1 ) and (2‐pyridyl‐1H ‐inden‐1‐yl)dicyclohexylphosphine ( 4 ) in refluxing heptane gave the novel trinuclear ruthenium clusters (μ3‐η125–2‐phenyl‐3‐Cy2PC9H4)Ru3(CO)8 ( 1c ) and [μ2‐η1–2‐(pyridin‐2‐yl)‐3‐Cy2PC9H6]Ru3(CO)9 ( 4a ), respectively, via C ─ H bond cleavage. (2‐Mesityl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 2 ) reacted with Ru3(CO)12 in refluxing heptane to give the trinuclear ruthenium cluster [μ‐2‐mesityl‐(3‐Cy2PC9H5)](μ2‐CO)Ru3(CO)9 ( 2c ) via C ─ H bond cleavage and carbonyl insertion. 2‐(Anthracen‐9‐yl)‐1H –inden‐3‐yldicyclohexylphosphine ( 3 ) reacted with Ru3(CO)12 in refluxing heptane to give the dinuclear ruthenium cluster [μ2‐η33–2‐(anthracen‐9‐yl)‐3‐Cy2PC9H6]Ru2(CO)5 ( 3a ). The structures of 1c , 2c , 3a and 4a were fully characterized using IR and NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. These results suggest that the 2‐aryl substituent on the indenyl ring has a pronounced effect on the reaction and coordination modes of Ru3(CO)12.  相似文献   

10.
张永强  王佰全  徐善生  周秀中 《中国化学》2002,20(11):1388-1392
IntroductionWerecentlyreportedanintramolecularthermalrear rangementbetweenSi—SiandFe—Febondsinthedinu clearironcomplex { (Me2 SiSiMe2 ) [(η5 C5H4 )Fe(CO) ]2 (μ CO) 2 } (Scheme 1) .1 5Thethermalrearrangementwaslaterextendedtogermanium ironandsilicon rutheni umanalogues .6 8Th…  相似文献   

11.
UV irradiation of [Ru2(CO)4(η-C5H5)2] yields the tri- and tetra-ruthenium complexes [Ru2(CO)4(η-C5H5){η-C5H4Ru(CO)2(η-C5H5)}] and [Ru4(CO)63-C5H4)2(η-C5H5)2]. The μ3-C5H4 ligand in the latter has been characterised through an X-ray diffraction study on [Ru4(CO)5{P(OMe)3}(μ3-C5H4)2(η-C5H5)2].  相似文献   

12.
Oxidative-addition of PhTe2Ph to the furyne cluster [Ru3(CO)7(μ-H)(μ32-C4H2O){μ-P(C4H3O)2}(μ-dppm)] (1) results in the isolation of four complexes; (i) the previously reported 54-electron cluster [Ru3(CO)63-Te)2(μ-TePh)2(μ-dppm)] (5) which results from elimination of trifuryl phosphine, (ii) the furenyl cluster [Ru3(CO)5(μ-η2-C4H3O){μ-P(C4H3O)2}(μ-TePh)2(μ-dppm)] (6) which results from carbon-hydrogen bond formation and (iii) two new 50-electron complexes [Ru3(CO)5(μ-H)(μ32-C4H2O){μ-P(C4H3O)2}(μ-TePh)22-dppm)] (7) and [Ru3(CO)4(μ-H){P(C4H3O)3}(μ32-C4H2O){μ-P(C4H3O)2}(μ-TePh)22-dppm)] (8) both containing unsymmetrical furyne ligands. The structures of all the new compounds have been unambiguously established by single crystal X-ray crystallography. Further reactivity studies have provided a clear understanding of the relative sequence of the key oxidative-addition and reductive-elimination processes, showing that 6 is an intermediate in the formation of 7. DFT calculations have been used to shed light on the unsymmetrical binding of the furyne ligand in 7 and also to show that the adopted position of the heteroatom within the furyne ring can vary within complexes of this type.  相似文献   

13.
Treatment of the μ(η1)-alkyne complex (η-C5H5)2Rh2(CO)2(CF3C2CF3) with trimethylamine-N-oxide results in mono-decarbonylation to give the μ(η2)- alkyne complex (η-C5H5)2Rh2(μ-CO)(CF3C2CF3). Coordinative addition of a variety of ligands L to the monocarbonyl complex has been achieved at room temperature, and stable adducts (η-C5H5)2Rh2(CO)L(CF3C2CF3) (L  CO, CNBut, PPh3, PMePh2, P(OMe)3, AsPh3, PF3 and PF2(NEt2)) have been fully characterized by infrared and NMR spectroscopy. In each complex, there is a μ(η1)-attachment of the hexafluorobut-2-yne and a trans-arrangement of CO and L. The spectroscopic data establish that there is rapid scrambling of CO and L when L  CNBut. An unstable adduct is formed when (η-C5H5)2Rh2(μ-CO)(CF3C2CF3) is dissolved in pyridine.  相似文献   

14.
In boiling toluene, diphenylacetylene is readily displaced from the dimetallocycle [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C5H5)2] by a variety of reagents (P(OMe)3, SO2, R2CN2, Ph2PCH2) to produce [Ru2(CO){P(OMe)3}(μ-CO)2 - (η-C5H5)2] or [Ru2(CO)2(μ-CO)(μ-L)(η-C5H5)2] (L  SO2, CR2, CH2) in high yield.  相似文献   

15.
Treatment of [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C 5H5)2] with allene in toluene at 100°C displaces diphenylacetylene and produces [Ru(CO)(η-C5H5)-{η3-C3H4Ru(CO)2(η-C5H5)}]; upon protonation a 1-methylvinyl cation [Ru2(CO)2(μ-CO){μ-C(Me)CH2}(η-C5H5)2]+ is formed which undergoes nucleophillic attack by hydride to yield the μ-dimethylcarbene complex [Ru2(CO)2-(μ-CO)(μ-CMe2)(η-C5H5)2].  相似文献   

16.
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru3(CO)12) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru2(CO)422-O2CC3F7)2(L)2 (1a, L?=?C5H5N; 1b, L?=?PTA; 1c, L?=?PPh3) and Ru2(CO)422-O2CC11F23)2(L)2 (2a, L?=?C5H5N; 2b, L?=?PTA; 2c, L?=?PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru2(CO)422-O2CC3H7)2(PPh3)2 (3) and Ru2(CO)422-O2CC11H23)2(PPh3)2 (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.  相似文献   

17.
The thermal reaction of Ru3(CO)12 ( 1 ) with salicylic acid, in the presence of triphenylphosphine, pyridine, or dimethylsulfoxide, afforded the dinuclear complexes Ru2(CO)4(μ‐O2CC6H4OH)2L2 ( 2 ) [L = PPh3 ( 2a ). C5H5N ( 2b ); (CH3)2SO ( 2c )]. Complex 2b was further reacted with the aromatic dimmines 2,2′‐dipyridine or 1,10‐phenanthroline to give the cationic diruthenium complexes [Ru2(CO)2(μ‐CO)2(μ‐O2CC6H4OH)(N∩N)2]+ ( 3 ) [(N∩N) = 2,2′‐dipyridine ( 3a ); 1,10‐phenanthroline ( 3b )], which were isolated as their tetraphenylborate salts. All five novel complexes were characterized spectroscopically and analytically. For 2a – 2b and 3a – 3b , single‐crystal X‐ray diffraction studies were also carried out.  相似文献   

18.
The complexes [Ru2(CO)2(μ-CO)(μ-CMe)(η-C5H5)2]? and [Ru2CO2(μ-CO)(μ-CCH2)(η-C5H5)2] react together to give [{Ru2CO)3(η-C5H5)2}2(μ-CMeCHCH)]+ and [{Ru3(CO)3(η-C5H5)3}(μ-CCH2CHC){Ru2(CO)3(η-C5H5)2}], each characterised by X-ray diffraction. The former results from ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrangement.  相似文献   

19.
The complete sequence of reactions in the base‐promoted reduction of [{RuII(CO)3Cl2}2] to [RuI2(CO)4]2+ has been unraveled. Several μ‐OH, μ:κ2‐CO2H‐bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal‐coordinated carbonyls by hydroxides. The isolated compounds are [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐OH)(NPF‐Am)2][PF6] ( 1 ; NPF‐Am=2‐amino‐5,7‐trifluoromethyl‐1,8‐naphthyridine) and [Ru2(CO)4(μ:κ2C,O‐CO2H)(μ‐OH)(NP‐Me2)2][BF4]2 ( 2 ), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru4(CO)8(H2O)23‐OH)2(μ:κ2C,O‐CO2H)4][CF3SO3]2 ( 3 ) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a π‐donor chlorido ligand, which results in [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐Cl)(NP‐PhOMe)2][BF4] ( 4 ). The production of [Ru2(CO)4]2+ has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)–diruthenium(II) complex to a dihydrido–diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the RuI? RuI single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru2(CO)4(CH3CN)6]2+ precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by TlI salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear RuI2RuII complex [{Ru(NP‐Am)2(CO)}{Ru2(NP‐Am)2(CO)2(μ‐CO)2}(μ33C,O,O′‐CO2)][BF4]2 ( 6 ). These unprecedented diruthenium compounds are the dinuclear congeners of the water–gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.  相似文献   

20.
The reactions of [Ru3(CO)10(μ-dppm)] 4 with quinolines afforded [Ru3 (μ-CO)(CO)732-P(C6H5)CH2P(C6H5)2)}{μ-η2-C9H5(R)N}] (8, R = 4-Me; 9, R = H) as the major products along with small amounts of known compound [Ru3(CO)933-P(C6H5)CH2P(C6H5)(C6H4)}] 5. The molecular structure of 8 has been determined by single crystal X-ray studies. The reaction of 5 with 4-methylquinoline in refluxing cyclohexane afforded 8 and two known dinuclear compounds, [Ru2(CO)6{μ-CH2P(C6H5)(C6H4)P(C6H5}] 10 and [Ru2(CO)6 {μ-(C6H4)P(C6H5)(CH2)P(C6H5}] 11, in 40, 12, and 10% yields, respectively. The compounds 10 and 11 are also formed from the thermolysis of 4 in addition to the major compound 5. The solid state structure of the previously reported [Ru3(CO)10(η-H){μ-η2-C9H6N}] 2a is also reported for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号