首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Fe(III), Co(II) and Cu(II) complexes of 8‐quinolinol were encapsulated into the supercages of zeolite? Y and characterized by X‐ray diffraction, SEM, N2 adsorption/desorption, FT‐IR, UV–vis spectroscopy, elemental analysis, ICP‐AES and TG/DSC measurements. The encapsulation was achieved by a flexible ligand method in which the transition metal cations were first ion‐exchanged into zeolite Y and then complexed with 8‐quinolinol ligand. The metal‐exchanged zeolites, metal complexes encapsulated in zeolite–Y plus non‐encapsulated homogeneous counterparts were all screened as catalysts for the aerobic oxidation of styrene under mild conditions. It was found that the encapsulated complexes always showed better activity than their respective non‐encapsulated counterparts. Moreover, the encapsulated iron complex showed good recoverability without significant loss of activity and selectivity within successive runs. Heterogeneity test for this catalyst confirmed its high stability against leaching of active complex species into solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Transition metal [M = VO (IV) and/or Cu (II)] complexes with Schiff base ligand, (Z)‐2‐((2‐hydroxybenzylideneamino)phenol (H2L) have been entrapped in the super cages of zeolite‐Y by Flexible Ligand Method. Synthesized materials have been characterized by preferential physico‐chemical techniques such as inductively coupled plasma optical emission spectroscopy (ICP‐OES), elemental analyses (CHN), fourier transmission infrared spectroscopy (FTIR), electronic and UV‐reflectance spectra, Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron micrographs (SEMs), X‐ray diffraction patterns (XRD) and thermogravimetric analysis (TGA). The catalytic competence of zeolite‐Y entrapped transition metal complexes was examined in Baeyer‐Villiger (BV) oxidation of cyclopentanone using 30% H2O2 as an oxidant beside neat complexes to check the aptitude of heterogeneous catalysis over the homogeneous system. The effect of experimental variables such as mole ratio of substrate to an oxidant, amount of catalyst, reaction time, varying oxidants and solvents on the conversion of cyclopentanone was also tested. Under the optimized reaction conditions, one of the zeolite‐Y entrapped transition metal complex viz. [VO(L)H2O]‐Y [where L = (Z)‐2‐((2‐hydroxybenzylideneamino)phenol] was found to be a potential contender by providing 80.22% conversion of cyclopentanone (TON: 10479.42), and the selectivity towards δ‐valerolactone was 83.56%.  相似文献   

3.
Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50–150 μm‐sized FCC spheres heavily influence their catalytic performance. Single‐molecule fluorescence‐based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super‐resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub‐micrometer zeolite ZSM‐5 domains within real‐life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM‐5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity.  相似文献   

4.
The effect of the chemical structure on the reactivity of alkenes used in thiol–ene photopolymerizations has been investigated with real‐time infrared spectroscopy. Model studies of thiol–ene photoreactions with various monofunctional hydrocarbon alkenes and the monofunctional thiol ethyl‐3‐mercaptopropionate have been performed to identify and understand structure–reactivity relationships. The results demonstrate that terminal enes react very rapidly with thiol, achieve complete conversion, and are independent of the aliphatic hydrocarbon substituent length. Disubstitution on a single carbon of a terminal ene significantly reduces the reactivity, whereas substitution on the carbon α to the terminal ene has a minimal influence on the reactivity. Internal trans enes display reduced reactivity and a lower overall conversion and deviate from the standard thiol–ene reaction mechanism because of steric strain induced by 1,3‐interactions. The reactivity and conversion of internal trans enes decrease as the substituents on the ene become larger, reaching a minimum when the substituent size is greater than or equal to that of propyl groups. Internal cis enes react rapidly with thiol; however, they undergo a fast isomerization–elimination reaction sequence generating the trans ene, which proceeds to react at a reduced rate with thiol. The reactivity of cyclic enes is dictated by ring strain, stereoelectronic effects, and hydrogen abstractability. The reactivity trends in the model studies have been used to explain the photopolymerization mechanism and kinetics of a series of multifunctional thiol–ene systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6283–6298, 2004  相似文献   

5.
palladium complexes of ferrocenyl‐functionalized N‐heterocyclic carbenes with different substituents were synthesized. The molecular structures of selected complexes were determined by X‐ray diffraction and show a pseudo‐square‐planar structure with a central palladium atom surrounded by carbene, pyridine, and two chloride ligands. The influence of the different substituents on the structure and reactivity of the complexes was studied. The catalytic properties of the complexes were investigated in the Larock indolization reactions of 2‐bromoanilines with diphenylacetylene. Their performances slightly varied in this reaction, but the complex with mesityl substituent showed the best activity.  相似文献   

6.
New ternary Cu(II)‐chelates with the general formula [ML L′(H2O)x] (NO3)y x (H2O), x = 0–2 and y = 0–1, (L) = 5‐acetyl‐4‐hydroxy‐2H‐1,3‐thiazine‐2,6(3H)‐dione with in the presence of a secondary ligand (L′) [N,O‐donor; 8 hydroxyquinoline or N,N‐donor; 1,10‐phenanthroline and diethethylendiamine]. Characterization of the synthesized complexes was established based on elemental analysis, molar conductance, magnetic susceptibility measurements, spectral (infrared, electronic, mass, 1H‐NMR and ESR) as well as thermal gravimetric analysis (TGA). The complexes exhibited octahedral and square planer geometry. The antimicrobial activity for the studied complexes was tested for different kind of organisms. The geometrical and non‐linear optical parameters of the studied complexes 1–3 are investigated theoretically at the B3LYP/GENECP level of theory. The optimized geometries of the studied complexes are non‐planner as indicated from the dihedral angles. The natural charge population (core, valence and Rydberg), exact electronic configuration, total Lewis, and total non‐Lewis is computed and discussed in terms of natural bond orbitals (NBO) analysis. The calculated EHOMO and ELUMO energies at the same level of theory of the studied complexes were used to calculate the global properties; hardness (η), global softness (S), electrophilicity (ω) and electronegativity (χ). The total dipole moment (μtot), total and anisotropy of polarizability (? α ?), (Δα) and first hyperpolarizability (? β ?) values were calculated and compared with urea as a reference compound. From the values of the computed first hyperpolarizability (? β ?), the ligand and the studied complexes show promising optical properties.  相似文献   

7.
The reactivity and selectivity of the the captodative olefins 1‐acylvinyl benzoates 1a – 1f and 3a as heterodienes in hetero‐DielsAlder reactions in the presence of electron‐rich dienophiles is described. Heterodienes 1 undergo regioselective cycloaddition with the alkyl vinyl etherdienophiles 6a , b and 9 to give the corresponding dihydro‐2H‐pyrans 7, 8 , and 10 under thermal conditions. The reactivity of these cycloadditions depends, to a large extent, on the electronic demand of the substituent in the aroyloxy group of the heterodiene. Frontier‐molecular‐orbital (FMO; ab initio) and density‐functional‐theory (DFT) calculations of the ground and transition states account for the reactivity and regioselectivity observed in these processes.  相似文献   

8.
The functionalization of nanoporous zeolite L crystals with β‐cyclodextrin (CD) has been demonstrated. The zeolite surface was first modified with amino groups by using two different aminoalkoxysilanes. Then, 1,4‐phenylene diisothiocyanate was reacted with the amino monolayer and used to bind CD heptamine by using its remaining isothiocyanate groups. The use of the different aminoalkoxysilanes, 3‐aminopropyl dimethylethoxysilane (APDMES) and 3‐aminopropyl triethoxysilane (APTES), led to drastic differences in uptake and release properties. Thionine was found to be absorbed and released from amino‐ and CD‐functionalized zeolites when APDMES was used, whereas functionalization by APTES led to complete blockage of the zeolite channels. Fluorescence microscopy showed that the CD groups covalently attached to the zeolite crystals could bind adamantyl‐modified dyes in a specific and reversible manner. This strategy allowed the specific immobilization of His‐tagged proteins by using combined host–guest and His‐tag‐Ni‐nitrilotriacetic acid (NTA) coordination chemistry. Such multifunctional systems have the potential for encapsulation of drug molecules inside the zeolite pores and non‐covalent attachment of other (for example, targeting) ligand molecules on its surface.  相似文献   

9.
The structures of alkali‐exchanged faujasite (X–FAU, X = Li+ or Na+ ion) and ZSM‐5 (Li–ZSM‐5) zeolites and their interactions with ethylene have been investigated by means of quantum cluster and embedded cluster approaches at the B3LYP/6‐31G(d, p) level of theory. Inclusion of the Madelung potential from the zeolite framework has a significant effect on the structure and interaction energies of the adsorption complexes and leads to differentiation of different types of zeolites (ZSM‐5 and FAU) that cannot be drawn from a typical quantum cluster model, H3SiO(X)Al(OH)2OSiH3. The Li–ZSM‐5 zeolite is predicted to have a higher Lewis acidity and thus higher ethylene adsorption energy than the Li–FAU zeolites (16.4 vs. 14.4 kcal/mol), in good agreement with the known acidity trend of these two zeolites. On the other hand, the cluster models give virtually the same adsorption energies for both zeolite complexes (8.9 vs. 9.1 kcal/mol). For the larger cation‐exchanged Na–FAU complex, the adsorption energy (11.6 kcal/mol) is predicted to be lower than that of Li–FAU zeolites, which compares well with the experimental estimate of about 9.6 kcal/mol for ethylene adsorption on a less acidic Na–X zeolite. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 333–340, 2003  相似文献   

10.
Incorporation of semiconductor property into zeolite materials is a plausible approach to graft oxide zeolites with multifunctionality in which both electronic/optoelectronic functions and high porosity are integrated. However, creating such semiconductor zeolites, especially the ones with controllable function regulation still remains as a great synthetic challenge over the years. Hereby, we reported the first case of an interrupted chalcogenide‐based zeolite‐analog semiconductor with an entirely new boracite‐related framework and specific sites at the interrupted section. The semiconducting nature and band structure of this open‐framework n‐type semiconductor material were characterized with solid‐state UV/Vis diffuse reflectance spectroscopy and Mott–Schottky measurements. More importantly, the In–Se chalcogenide zeolite analog was for the first time explored as an effective electrocatalyst for the oxygen reduction reaction (ORR). The specific indium sites served as active centers and proved to be responsible for a superior ORR activity. Meanwhile, these specific sites could be precisely replaced by bismuth(III) ions, leading to facile manipulation in their electro‐/photoelectrochemical properties. Such atomically precise doping successfully implemented at the semiconductor zeolite material with specifically interrupted sites presents a very promising route for accurately regulating electronic structure and photoelectrical properties of other open‐framework semiconductor materials.  相似文献   

11.
Transition‐metal complexes containing stimuli‐responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor–acceptor azobenzene derivatives that possess bipyridine groups connected to a 4‐dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD‐DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.  相似文献   

12.
Amide‐sulfonamides provide a potent anti‐inflammatory scaffold targeting the CXCR4 receptor. A series of novel amide‐sulfonamide derivatives were investigated for their gas‐phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time‐of‐flight mass spectrometry in negative ion mode. Upon collision‐induced dissociation (CID), deprotonated amide‐sulfonamides mainly underwent either an elimination of the amine to form the sulfonyl anion and amide anion or a benzoylamide derivative to provide sulfonamide anion bearing respective substituent groups. Based on the characteristic fragment ions and the deuterium–hydrogen exchange experiments, three possible fragmentation mechanisms corresponding to ion‐neutral complexes including [sulfonyl anion/amine] complex ( INC‐1 ), [sulfonamide anion/benzoylamide derivative] complex ( INC‐2 ) and [amide anion/sulfonamide] complex ( INC‐3 ), respectively, were proposed. These three ion‐neutral complexes might be produced by the cleavages of S–N and C–N bond from the amide‐sulfonamides, which generated the sulfonyl anion (Route 1), sulfonamide anion (Route 2) and the amide anion (Route 3). DFT calculations suggested that Route 1, which generated the sulfonyl anion (ion c ) is more favorable. In addition, the elimination of SO2 through a three‐membered‐ring transition state followed by the formation of C–N was observed for all the amide‐sulfonamides.  相似文献   

13.
A series of cobalt(II) complexes containing tridentate 2‐pyrazolyl‐substituted 1,10‐phenanthroline ligands (L) with the general formula [LCoCl2] have been successfully synthesized and fully identified by IR spectroscopy, elemental analysis and mass spectroscopy. Cobalt complexes Co4–Co8 were further confirmed by X‐ray crystallographic analysis, and all the complexes adopted distorted trigonal pyramid geometries around the cobalt center. In combination with methylaluminoxane, the complexes exhibit high cis‐1,4‐selectivity for 1,3‐butadiene polymerization. The catalytic activities of the complexes mainly depend on the nature of the substituent and its position at the pyrazolyl ring of the ligand. Complexes having a bulkier substituent on the pyrazolyl ring of the ligand show lower catalytic activity and the incorporation of electron‐withdrawing substituent enhances the activity. Polymerization behaviors were almost not affected with varying [Al]/[Co] ratio, but both activity and the cis‐1,4 content decrease slightly as polymerization temperature increasing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrocarbon‐pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon‐pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H‐ZSM‐5 zeolite by advanced 13C–27Al double‐resonance solid‐state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the 13C nuclei (associated with HP species) and the 27Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction.  相似文献   

15.
We report the synthesis of a series of blue‐emitting 2‐phenylbenzoxazoles (PBOs) substituted at either the 5‐ or 6‐position of the benzoxazole ring and the para‐position of the phenyl substituent. The thermal and optical properties of the materials can be rationalized in terms of the position of the substituent at the benzoxazole moiety and the electron‐withdrawing or electron‐donating character of the substituents. From the results, we conclude that the combination of an electron‐donating substituent at the benzoxazole fragment and an electron‐withdrawing one at the phenyl fragment has a more marked effect on the electronic properties of the aromatic PBO core than other possibilities. This particular combination gives luminophores that are suitable for optical applications on the basis of their high emission efficiency and photostability. In view of that, oriented films were prepared by in situ polymerization of a mixture of a liquid crystalline direactive matrix containing 5% (w/w) of the luminophore. The films exhibit linearly polarized emission.  相似文献   

16.
The title compounds ( 3 , 8 , 9 and 10 ) were efficiently synthesized, and their substitution reactions with various nucleophiles were carried out. The effects of leaving group, sulfur‐substituent, solvent, reaction temperature, and the nature of the nucleophiles on the reactivity and SN2/SN2′ regioselectivity were studied and rationalized with semi‐empirical calculations.  相似文献   

17.
The MP2 ab initio quantum chemistry methods were utilized to study the halogen‐bond and pnicogen‐bond system formed between PH2X (X = Br, CH3, OH, CN, NO2, CF3) and BrY (Y = Br, Cl, F). Calculated results show that all substituent can form halogen‐bond complexes while part substituent can form pnicogen‐bond complexes. Traditional, chlorine‐shared and ion‐pair halogen‐bonds complexes have been found with the different substituent X and Y. The halogen‐bonds are stronger than the related pnicogen‐bonds. For halogen‐bonds, strongly electronegative substituents which are connected to the Lewis acid can strengthen the bonds and significantly influenced the structures and properties of the compounds. In contrast, the substituents which connected to the Lewis bases can produce opposite effects. The interaction energies of halogen‐bonds are 2.56 to 32.06 kcal·mol?1; The strongest halogen‐bond was found in the complex of PH2OH???BrF. The interaction energies of pnicogen‐bonds are in the range 1.20 to 2.28 kcal·mol?1; the strongest pnicogen‐bond was found in PH2Br???Br2 complex. The charge transfer of lp(P) ? σ*(Br? Y), lp(F) ? σ*(Br? P), and lp(Br) ? σ*(X? P) play important roles in the formation of the halogen‐bonds and pnicogen‐bonds, which lead to polarization of the monomers. The polarization caused by the halogen‐bond is more obvious than that by the pnicogen‐bond, resulting in that some halogen‐bonds having little covalent character. The symmetry adapted perturbation theory (SAPT) energy decomposition analysis showes that the halogen‐bond and pnicogen‐bond interactions are predominantly electrostatic and dispersion, respectively.  相似文献   

18.
In this study, the synthesis of template free zeolite Y and its recrystallization to two types of pure zeolite P and analcime in the presence of the amino acid d‐methionine as structure‐directing agent were investigated. The recrystallization occurred solely when specific heating cycles were applyed. A completely crystallized phase of zeolite Y for the mixture of zeolite P and analcime was observed in the presence of d‐methionine at a concentration of 0.015 <SC>m</SC>. The effect of different Si/Al ratios (2.3–9.3), crystallization temperatures (40–160 °C), and crystallization times (28–96 hours) on the achievement of two different zeolite types were studied as well. Pure zeolite P was obtained during conventional heating to 100 °C for 42 hours, whereas pure analcime zeolite was achieved by heating the mixture to 160 °C for 96 hours. The products were characterized by X‐ray diffraction, scanning electron microscopy, and IR spectroscopy.  相似文献   

19.
Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers.  相似文献   

20.
《化学:亚洲杂志》2018,13(16):2077-2084
Platinum nanoparticles encapsulated into zeolite Y (Pt@Y catalyst) exhibit excellent catalytic selectivity in the hydrogenation of substituted nitroarenes to form the corresponding aromatic amines, even after complete conversion. With the hydrogenation of p‐chloronitrobenzene as a model, the role of zeolite encapsulation toward perfect selectivity can be attributed to constraint of the substrate adsorbed on the platinum surface in an end‐on conformation. This conformation results in the activation of only one adsorbed group, with little influence on the other one in the molecule. Owing to a much lower apparent activation energy of Pt@Y for the hydrogenation of a separately adsorbed nitro group than that of the adsorbed chloro group, the Pt@Y catalyst can prevent hydrodechlorination of p‐chloronitrobenzene under mild conditions. Moreover, such a conformation results in a reduced adsorption energy of target p‐chloroaniline on the platinum surface; thus suppressing the reactivity of hydrodechlorination of p‐chloroaniline to circumvent further C−Cl bond breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号