首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium metal (LM) is a promising anode material for next generation lithium ion based electrochemical energy storage devices. Critical issues of unstable solid electrolyte interphases (SEIs) and dendrite growth however still impede its practical applications. Herein, a composite gel polymer electrolyte (GPE), formed through in situ polymerization of pentaerythritol tetraacrylate with fumed silica fillers, is developed to achieve high performance lithium metal batteries (LMBs). As evidenced theoretically and experimentally, the presence of SiO2 not only accelerates Li+ transport but also regulates Li+ solvation sheath structures, thus facilitating fast kinetics and formation of stable LiF-rich interphase and achieving uniform Li depositions to suppress Li dendrite growth. The composite GPE-based Li||Cu half-cells and Li||Li symmetrical cells display high Coulombic efficiency (CE) of 90.3% after 450 cycles and maintain stability over 960 h at 3 mA cm−2 and 3 mAh cm−2, respectively. In addition, Li||LiFePO4 full-cells with a LM anode of limited Li supply of 4 mAh cm−2 achieve capacity retention of 68.5% after 700 cycles at 0.5 C (1 C = 170 mA g−1). Especially, when further applied in anode-free LMBs, the carbon cloth||LiFePO4 full-cell exhibits excellent cycling stability with an average CE of 99.94% and capacity retention of 90.3% at the 160th cycle at 0.5 C.  相似文献   

2.
The development of lithium metal anodes for next generation batteries remains a challenge. Uncontrolled Li dendrite growth not only induces severe safety issues but also leads to capacity fading by continuously consuming the electrolyte. This study demonstrates the design and fabrication of a composite protective layer composed of a high dielectric polymer, inorganic particles, and an electrolyte to overcome these obstacles. This layer not only suppresses dendrite growth, but also prevents LiPF6 degradation. The electrolyte introduced in the protective layer remains within the coating layer after solvent removal and acts as an ion transport channel at the interface. This enables the protective layer to exhibit high ionic conductivity and mechanical strength. The composite protective layer, which exhibits synergistic soft‐rigid characteristics, is placed on the Li metal anode and facilitates superior interfacial stability during long‐term cycles. LiMn2O4/coated lithium full cells using the composite protective layer show a superior rate capability and enhanced capacity retention compared to the cells using a bare lithium anode. The proposed strategy opens new avenues to fabricate a sustainable composite protective layer that affords superior performance in lithium metal batteries.  相似文献   

3.
The “shuttle effect” that stems from the dissolution of polysulfides is the most fatal issue affecting the cycle life of lithium‐sulfur (Li–S) batteries. In order to suppress the “shuttle effect,” a new strategy of using a highly lithium ion conductive lithium fluoride/graphene oxide (LiF/GO) solid electrolyte interphase (SEI) to mechanically prevent the lithium dendrite breakthrough is reported. When utilized in Li–S batteries, the LiF/GO SEI coated separator demonstrates significant feature in mitigating the polysulfide shuttling as observed by in situ UV–vis spectroscopy. Moreover, the restrained “shuttle effect” can also be confirmed by analysis of electrochemical impedance spectroscopy and characterization of lithium dendrites, which indicates that no insulating layer of solid Li2S2/Li2S is found on lithium anode surface. Furthermore, the LiF/GO SEI layer puts out good lithium ion conductivity as its lithium ion diffusion coefficient reaches a high value of 1.5 × 10?7 cm2 s?1. These features enable a remarkable cyclic property of 0.043% of capacity decay per cycle during 400 cycles.  相似文献   

4.
5.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

6.
Aqueous zinc metal batteries are safe, economic, and environmentally friendly. However, the dendrite growth and inevitable corrosion issues under aqueous condition greatly restrict the development of long cycling life zinc metal batteries. To achieve the long‐term reversible zinc deposition/dissolution, a polyzwitterionic hydrogel electrolyte (PZHE) is constructed with record high room temperature ionic conductivity of 32.0 mS cm?1 and Zn2+ transference number of 0.656. The abundant hydrophilic and charged groups in the zwitterionic polymer can well immobilize water molecules in the polymer skeleton and reduce side reactions. The charged groups of the zwitterionic polymer can also homogenize the ion distribution and achieve uniform zinc deposition. Long cycling life of over 3500 h is achieved for the symmetric batteries with PZHE. Full cells with VS2 and MnO2 cathodes are also demonstrated to exhibit excellent cycling stability. With combined advantages of physical and chemical crosslinking gels, the PZHE enabled flexible quasi‐solid state zinc metal batteries with excellent processability, self‐healing property and safety, can operate even under various extreme conditions such as cutting, soaking, hammering, washing, burning, and freezing. It is believed that the PZHE can provide a promising opportunity and pave the way for other long‐life aqueous batteries.  相似文献   

7.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

8.
All-solid-state (ASS) lithium metal batteries (LMBs) are considered the most promising next-generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid-state electrolyte (SSE) film with fast ion-transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60  µ m), flexible, and free-standing argyrodite (Li6PS5Cl) SSE film is designed through a self-limited strategy. A chemically compatible cellulose membrane is employed as the self-limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium-ion transportation. The self-limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium-indium alloy) at both mold-cell and pouch-cell levels, demonstrating a stable performance and high-rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high-energy-density ASS batteries.  相似文献   

9.
Li‐metal is considered as the most promising anode material to advance the development of next‐generation energy storage devices owing to its unparalleled theoretical specific capacity and extremely low redox electrochemical potential. However, safety concerns and poor cycling retention of Li‐metal batteries (LMBs) caused by uncontrolled Li dendrite growth still limit their broad application. Herein, liquid polydimethylsiloxane (PDMS) terminated by –OCH3 groups is proposed as a graftable additive to reinforce the anode dendrite suppression for LMBs. Such a grafting triggers the formation of a conformal hybrid solid electrolyte interphase (SEI) with increased fractions of LiF and Li–Si–O‐based moieties, which serve as a rigid barrier and ionic conductor for uniform Li‐ion flow and Li‐mass deposition. The grafting protected anode endows Li/Li symmetric cells with a long lifetime over 1800 h with a much smaller voltage gap (≈25 mV) between Li plating and stripping, than the naked anode. The coulombic efficiency values for Li/Cu asymmetric cells in carbonate electrolyte can reach up to 97% even at a high current density of 3 mA cm?2 or high capacity up to 4 mAh cm?2. The liquid PDMS additive shows advantage over solid siloxane additives with poor grafting ability in terms of Li surface compaction and SEI stabilization.  相似文献   

10.
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated.  相似文献   

11.
Organic cathode materials as economical and environment‐friendly alternatives to inorganic cathode materials have attracted comprehensive attention in potassium‐ion batteries (KIBs). Nonetheless, active material dissolution and mismatched electrolytes result in insufficient cycle life that definitely hinders their practical applications. Here, a significantly improved cycle life of 1000 cycles (80% capacity retention) on a practically insoluble organic cathode material, anthraquinone‐1,5‐disulfonic acid sodium salt, is realized, in KIBs through a solid‐electrolyte interphase (SEI) regulation strategy by ether‐based electrolytes. Such an excellent performance is attributed to the robust SEI film and fast reaction kinetics. More importantly, the ether‐electrolyte‐derived SEI film has a protective inorganic‐rich inner layer arising from the prior decomposition of potassium salts to solvents, as revealed by X‐ray photoelectron spectroscopy analysis and computational studies on molecular orbital energy levels. The findings shed light on the critical roles of electrolytes and the corresponding SEI films in enhancing performance of organic cathodes in KIBs.  相似文献   

12.
The serious safety issues caused by uncontrollable lithium (Li) dendrite growth, especially at high current densities, seriously hamper the rapid charging of Li metal‐based batteries. Here, the construction of Al–Li alloy/LiCl‐based Li anode (ALA/Li anode) is reported by displacement and alloying reaction between an AlCl3‐ionic liquid and a Li foil. This layer not only has high ion‐conductivity and good electron resistivity but also much improved mechanical strength (776 MPa) as well as good flexibility compared to a common solid electrolyte interphase layer (585 MPa). The high mechanical strength of the Al–Li alloy interlayer effectively eliminates volume expansion and dendrite growth in Li metal batteries, so that the ALA/Li anode achieves superior cycling for 1600 h (2.0 mA cm?2) and 1000 cycles at an ultrahigh current density (20 mA cm?2) without dendrite formation in symmetric batteries. In lithium–sulfur batteries, the dense alloy layer prevents direct contact between polysulfides and Li metal, inhibiting the shuttle effect and electrolyte decomposition. Long cycling performance is achieved even at a high current density (4 C) and a low electrolyte/sulfur (6.0 µL mg?1). This easy fabrication process provides a strategy to realize reliable safety during the rapid charging of Li‐metal batteries.  相似文献   

13.
Lithium metal anodes show immense scope for application in high‐energy electronics and electric vehicles. Unfortunately, lithium dendrite growth and volume change leading to short lifespan and safety issues severely limit the feasibility of lithium metal batteries. A rational design of metal–organic framework (MOF)‐modified Li metal anode with optimized Li plating/stripping behavior via one‐step carbonization of ZIF‐67 is proposed. Experimental and theoretical simulation results reveal that carbonized MOFs with uniformly dispersed Co nanoparticles in N‐graphene (Co@N‐G) exhibit an electronic/ionic dual‐conductivity and significantly improved affinity with Li, and so serve as an ideal host for dendrite‐free lithium deposition, consequently leading to uniform lithium plating/stripping during cycling. As a result, the anode delivers highly stable cyclic performance with high coulombic efficiency (CE) at ultrahigh current densities (CE = 91.5% after 130 cycles at 10 mA cm?2, and CE = 90.4% after 80 cycles at 15 mA cm?2). Moreover, the practical applicability and functionality of such anodes are demonstrated through assembly of Li‐Co@N‐G/NCM full batteries exhibiting a long cycle life of 100 cycles with a high capacity retention of 92% at 1 C.  相似文献   

14.
Anode‐free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li‐ion batteries, as well as ease of assembly because of the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, an anode‐free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (>99.8%) is reported for the first time. This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols, which minimize the corrosion of the in situly formed Li metal anode.  相似文献   

15.
Rechargeable Li-ion batteries (LIBs) are ubiquitous in present society and play an important role in consumer electronics and electric vehicles. Increasing LIBs’ energy density is therefore becoming a crucial research challenge with great implications. Li metal is a high-specific-capacity anode, which suffers from uneven Li deposition, “dead” Li formation, dendrite growth, and the resulting severe capacity fading. Here, a strategy to enable a tremendous improvement for LiCoO2-based Li metal batteries (Li||LCO) is described and experimentally demonstrated. By simply adjusting the charge cut-off voltage from 4.1 to 4.6 V, a high-voltage stimulation effect (HvSE) is demonstrated, which offers a uniform, dense, and crack-free Li deposition. As a result, the Li||LCO cell delivers a high energy density (ED) of 891 Wh kg-LCO−1 and a high capacity of 217 mAh g−1 can be maintained for more than 69 cycles. In contrast, the Li||LCO cell with the lower charge cut-off voltage of 4.1 V only delivers a low ED (458 Wh kg-LCO−1), specific capacity (117 mAh g−1), and “capacity diving” occurs after only 35 cycles. This HvSE is also applied to run pouch cells, which generate greater than 20% capacity and cycling performance improvement with the higher charge cut-off voltage.  相似文献   

16.
Lithium ion batteries (LIBs) are one of the most potential energy storage devices among various rechargeable batteries due to their high energy/power density, long cycle life, and low self-discharge properties. However, current LIBs fail to meet the ever-increasing safety and fast charge/discharge demands. As one of the main components in LIBs, separator is of paramount importance for safety and rate performance of LIBs. Among the various separators, composite separators have been widely investigated for improving their thermal stability, mechanical strength, electrolyte uptake, and ionic conductivity. Herein, the challenges and limitations of commercial separators for LIBs are reviewed, and a systematic overview of the state-of-the-art research progress in composite separators is provided for safe and high rate LIBs. Various combination types of composite separators including blending, layer, core–shell, and grafting types are covered. In addition, models and simulations based on the various types of composite separators are discussed to comprehend the composite mechanism for robust performances. At the end, future directions and perspectives for further advances in composite separators are presented to boost safety and rate capacity of LIBs.  相似文献   

17.
18.
Lithium batteries have become one of the best choices for energy storage due to their long lifespan, high operating voltage-platform and energy density without any memory effect. However, the ever-increased demands of high-performance lithium batteries indeed place a stricter request to the electrodes and electrolytes materials, and electrode-electrolyte interface. Various strategies are developed to enhance the overall performances of current lithium batteries, and among them, artificial modification of battery components is regarded as one of the most effective. However, systematic summery surrounding surface modifications is rare. In this review, the structural instability of the bare electrodes and the main defects of unmodified separator/solid electrolytes are briefly presented. Then diverse and advanced surface-engineering strategies for both the cathode and anode materials, as well as the separator/solid electrolytes are carefully summarized. More importantly, the prospects of surface modification and challenges of current methods for constructing high-performance lithium batteries are pointed out.  相似文献   

19.
The application of lithium metal batteries (LMBs) is impeded by safety concerns. Employing non-flammable electrolytes can improve battery reliability while the cost and performance deterioration limit their popularization. Herein, a high-performance non-flammable electrolyte is designed, 1.5 m LiTFSI in propylene carbonate (PC)/triethyl phosphate (TEP) (4:1 by vol.) with 4-nitrophenyl trifluoroacetate (TFANP) as the additive, which can facilitate the construction of LiF-rich solid electrolyte interphase (SEI) on Li anode surface and cathode electrolyte interphase (CEI) on cathode surface through its prioritized decomposition. In TFANP-containing electrolyte, the decreased TEP coordination number in the solvation sheath relieves the adverse effect of active TEP on both the SEI and CEI for suppressing the growth of Li dendrites and reducing the continuous electrolyte consumption. Thus, the Li||LiNi0.6Co0.2Mn0.2O2 battery with such an electrolyte can deliver 132 mAh g−1 after 150 cycles with high coulombic efficiency (99.5%) and superior rate performance (110 mAh g−1 at 5 C, 1 C = 200 mA g−1). This work provides a new additive insight on non-flammable electrolyte for reliable LMBs.  相似文献   

20.
Lithium metal is the “holy grail” anode for next-generation high-energy rechargeable batteries due to its high capacity and lowest redox potential among all reported anodes. However, the practical application of lithium metal batteries (LMBs) is hindered by safety concerns arising from uncontrollable Li dendrite growth and infinite volume change during the lithium plating and stripping process. The formation of stable solid electrolyte interphase (SEI) and the construction of robust 3D porous current collectors are effective approaches to overcoming the challenges of Li metal anode and promoting the practical application of LMBs. In this review, four strategies in structure and electrolyte design for high-performance Li metal anode, including surface coating, porous current collector, liquid electrolyte, and solid-state electrolyte are summarized. The challenges, opportunities, perspectives on future directions, and outlook for practical applications of Li metal anode, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号