首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The electrodynamic properties of La‐doped SrTiO3 thin films with controlled elemental vacancies are investigated using optical spectroscopy and thermopower measurement. In particular, a correlation between the polaron formation and thermoelectric properties of the transition metal oxide (TMO) thin films is observed. With decreasing oxygen partial pressure during the film growth (P(O2)), a systematic lattice expansion is observed along with the increased elemental vacancy and carrier density, experimentally determined using optical spectroscopy. Moreover, an absorption in the mid‐infrared photon energy range is found, which is attributed to the polaron formation in the doped SrTiO3 system. Thermopower of the La‐doped SrTiO3 thin films can be largely modulated from –120 to –260 μV K?1, reflecting an enhanced polaronic mass of ≈3 < m polron/m < ≈4. The elemental vacancies generated in the TMO films grown at various P(O2) influences the global polaronic transport, which governs the charge transport behavior, including the thermoelectric properties.  相似文献   

3.
The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next‐generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C60. A combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier‐free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy‐conversion and sensor technologies.  相似文献   

4.
Electronic properties of low dimensional systems are particularly sensitive to surface adsorbates. Clear understanding of such phenomena can lead to highly effective and nondestructive material engineering techniques. In this work, water adsorption at the surface of LaAlO3/SrTiO3 heterostructures is systematically studied. The saturation of surface dangling bonds by spontaneous water chemisorptions is found to be a main enabler of the formation of the interface 2D electron gas. In particular, when imbalanced distributions of water based ions, namely protons and hydroxyls, are generated, interface electron doping or depletion becomes surface adsorbates dominant and independent of the LaAlO3 layer thickness. The investigations also reveal the importance of hydrogen bonding through molecular water layers, which provides an energetically feasible pathway for manipulating the surface‐bond protons and thus the interface electrical characteristics.  相似文献   

5.
When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment.  相似文献   

6.
Developing reliable methods for modulating the electronic structure of the 2D electron gas (2DEG) in SrTiO3 is crucial for utilizing its full potential and inducing novel properties. Herein, it is shown that relatively simple surface preparation reconstructs the 2DEG at the SrTiO3 (STO) surface, leading to a Lifshitz-like transition. Combining experimental methods, such as angle-resolved photoemission spectroscopy (ARPES) and X-ray photoemission spectroscopy with ab initio calculations, that the modulation of the surface band structures can be effectively achieved via transforming the chemical composition at the atomic scale is found. In addition, ARPES experiments demonstrate that vacuum ultraviolet light can be efficiently employed to alter the band renormalization of the 2DEG system and control the electron-phonon interaction . This study provides a robust and straightforward route to stabilize and tune the low-dimensional electronic structure via the chemical degeneracy of the STO surface.  相似文献   

7.
Discovery of a ferroelectric‐like behavior of the LaAlO3/SrTiO3 (LAO/STO) interfaces provides an attractive platform for the development of nanoelectronic devices with functionality that can be tuned by electrical or mechanical means. However, further progress in this direction critically depends on deeper understanding of the physicochemical mechanism of this phenomenon. In this report, this problem by testing the electronic properties of the LAO/STO heterostructures with oxygen stoichiometry used as a variable is addressed. Local probe measurements in conjunction with interface electrical characterization allow to establish the field‐driven reversible migration of oxygen vacancies as the origin of the ferroelectric‐like behavior in LAO/STO. In addition, it is shown that oxygen deficiency gives rise to the formation of micrometer‐long atomically sharp boundaries with robust piezoelectricity stemming from a significant strain gradient across the boundary region. These boundaries are not ferroelectric but they can modulate the local electronic characteristics at the interface. The obtained results open a possibility to design and engineer electromechanical functionality in a wide variety of nominally nonpolar and non‐piezoelectric complex oxide heterostructures and thin films.  相似文献   

8.
An analysis of Mn substitution in SrTiO3 is performed in order to understand the origin of reported spin coupling in lightly Mn‐doped SrTiO3. The spin glass state magnetoelectrically coupled to the dipolar glass state has previously been reported for SrTiO3 substituted with only 2% of Mn on the B‐site. An analysis of the substitution mechanism for A‐ and B‐site doping shows a strong influence of processing conditions, such as processing temperature, oxygen partial pressure, and off‐stoichiometry. The required conditions for a site‐selective substitution are defined, which yield a single‐phase and almost defect‐free perovskite. Magnetic measurements show no magnetic anomalies resulting from spin coupling and only a simple paramagnetic behavior. Magnetic anomalies are observed only for the samples in which Mn is misplaced within the cation sublattice of the SrTiO3 perovskite. This occurs due to improper material processing, which causes initially unpredicted changes in the valence state of the Mn and results in the formation of structural defects and irregularities associated with segregation and nucleation of the magnetic species. Previously reported spin coupling in Mn‐doped SrTiO3 is not an intrinsic phenomenon and cannot be treated as a spin glass.  相似文献   

9.
The existence of ultra‐flexible low‐energy forms of boron oxides (B2O3 and BO) is demonstrated, in particular structures in which B3O3 or B4O2 six‐membered rings are linked by single B‐O‐B bridges. The minima in the energy landscapes are remarkably broad; the variation in the internal energies is very small over a very large range of volumes. Such volume changes may even exceed 200%. This remarkable behavior is attributed predominantly to the pronounced angular flexibility of the B‐O‐B bridges linking the rings, which is unusual for a covalent bond. At larger volumes, the structures are nanoporous; the pores collapse upon compression with negligible change in energy, making these suitable as guest‐host materials. In marked contrast, in other materials where low density frameworks have been reported or predicted, such low‐density phases are considerably higher in energy. The flexibility of the structures also offers a resolution of the long‐standing controversy reconciling the structure and density of vitreous B2O3.  相似文献   

10.
The elimination of possible defects is indispensable in making zeolite membranes popular in process industries. A novel counter‐diffusion chemical liquid deposition (CLD) technique is proposed and developed for selective defect‐patching of zeolite membranes. Dodecyltrimethoxysilane (DMS) is employed as the silane coupling agent, forming a protective layer on the membrane surface so that intracrystalline pores can be kept intact in the subsequent reparation step. By using tetraethoxy orthosilicate (TEOS) and (3‐chloropropyl)triethoxysilane (3CP‐TES), co‐hydrolysis and co‐condensation at the organic/aqueous interface fabricate the silsesquioxane/silicate hybrid on macro‐, meso‐ and even microdefects. The silicalite‐1 membrane before and after reparation is characterized using contact‐angle measurements, Fourier transform IR spectroscopy, and electron probe microanalysis. Permporometry is conducted to study the pore‐size distribution of the membrane before and after reparation. It is found that the silsesquioxane/silicate hybrid is only deposited at the pore‐mouth of the defects, and the defects can be plugged to less than 1.3 nm pores after patching. After reparation, the separation factor of a 50/50 n/i‐butane‐gas mixture through the membrane can be increased to 35.8 from 4.4, and the separation factor of a CO2/N2 gas mixture through the membrane can be increased to around 15 from 1, while keeping the two‐thirds CO2 permeation flux of the synthesized membrane.  相似文献   

11.
Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.  相似文献   

12.
Plastic strain engineering was applied to induce controllable changes in electronic and oxygen ion conductivity in oxides by orders of magnitude, without changing their nominal composition. By using SrTiO3 as a model system of technological importance, and by combining electrical and chemical tracer diffusion experiments with computational modeling, it is revealed that dislocations alter the equilibrium concentration and distribution of electronic and ionic defects. The easier reducibility of the dislocation cores increases the n‐type conductivity by 50 times at oxygen pressures below 10?5 atm at 650 °C. At higher oxygen pressures the p‐type conductivity decreases by 50 times and the oxygen diffusion coefficient reduces by three orders of magnitude. The strongly altered electrical and oxygen diffusion properties in SrTiO3 arise because of the existence of overlapping electrostatic fields around the positively charged dislocation cores. The findings and the approach are broadly important and have the potential for significantly impacting the functionalities of electrochemical and/or electronic applications such as thin film oxide electronics, memristive systems, sensors, micro‐solid oxide fuel cells, and catalysts, whose functionalities rely on the concentration and distribution of charged point defects.  相似文献   

13.
Size dependent variations in resistive switching using a metal‐semiconducting oxide model to examine the underlying mechanisms are reported. In the range of 20 nm to 200 nm, Au nanoparticle/SrTiO3 interface transport properties are size dependent. The size dependence is attributed to the combination of geometric scaling and size‐dependent Schottky properties. After electroforming, the observed “eight‐wise” bipolar resistive hysteresis loop is modulated by trap/detrap process. The size‐dependent high resistance state is consistent with changes in both the interfacial area and Schottky properties. The low resistance state exhibits size independent resistance through the dominant fast conductive path. Detrapping requires more work for smaller interfaces due to the associated larger built‐in electric field.  相似文献   

14.
This work reports a resistive switching effect observed at rectifying Pt/Bi1–δFeO3 interfaces and the impact of Bi deficiencies on its characteristics. Since Bi deficiencies provide hole carriers in BiFeO3, Bi‐deficient Bi1–δFeO3 films act as a p‐type semiconductor. As the Bi deficiency increased, a leakage current at Pt/Bi1–δFeO3 interfaces tended to increase, and finally, rectifying and hysteretic current–voltage (IV) characteristics were observed. In IV characteristics measured at a voltage‐sweep frequency of 1 kHz, positive and negative current peaks originating from ferroelectric displacement current were observed under forward and reverse bias prior to set and reset switching processes, respectively, suggesting that polarization reversal is involved in the resistive switching effect. The resistive switching measurements in a pulse‐voltage mode revealed that the switching speed and switching ratio can be improved by controlling the Bi deficiency. The resistive switching devices showed endurance of >105 cycles and data retention of >105 s at room temperature. Moreover, unlike conventional resistive switching devices made of metal oxides, no forming process is needed to obtain a stable resistive switching effect in the ferroelectric resistive switching devices. These results demonstrate promising prospects for application of the ferroelectric resistive switching effect at Pt/Bi1–δFeO3 interfaces to nonvolatile memory.  相似文献   

15.
A large jump of proton transfer rates across solid‐to‐solid interfaces by inserting an ultrathin amorphous silica layer into stacked metal oxide nanolayers is discovered using electrochemical impedance spectroscopy and Fourier‐transform infrared reflection absorption spectroscopy (FT‐IRRAS). The triple stacked nanolayers of Co3O4, SiO2, and TiO2 prepared by atomic layer deposition (ALD) enable a proton flux of 2400 ± 60 s?1 nm?2 (pH 4, room temperature), while a single TiO2 (5 nm) layer exhibits a threefold lower flux of 830 s?1 nm?2. Based on FT‐IRRAS measurements, this remarkable enhancement is proposed to originate from the sandwiched silica layer forming interfacial SiOTi and SiOCo linkages to TiO2 and Co3O4 nanolayers, respectively, with the O bridges providing fast H+ hopping pathways across the solid‐to‐solid interfaces. Together with the complete O2 impermeability of a 2 nm ALD‐grown SiO2 layer, the high flux for proton transport across multi‐stack metal oxide layers opens up the integration of incompatible catalytic environments to form functional nanoscale assemblies such as artificial photosystems for CO2 reduction by H2O.  相似文献   

16.
Chemical doping of graphene represents a powerful means of tailoring its electronic properties. Synchrotron‐based X‐ray spectroscopy offers an effective route to investigate the surface electronic and chemical states of functionalizing dopants. In this work, a suite of X‐ray techniques is used, including near edge X‐ray absorption fine structure spectroscopy, X‐ray photoemission spectroscopy, and photoemission threshold measurements, to systematically study plasma‐based chlorinated graphene on different substrates, with special focus on its dopant concentration, surface binding energy, bonding configuration, and work function shift. Detailed spectroscopic evidence of C–Cl bond formation at the surface of single layer graphene and correlation of the magnitude of p‐type doping with the surface coverage of adsorbed chlorine is demonstrated for the first time. It is shown that the chlorination process is a highly nonintrusive doping technology, which can effectively produce strongly p‐doped graphene with the 2D nature and long‐range periodicity of the electronic structure of graphene intact. The measurements also reveal that the interaction between graphene and chlorine atoms shows strong substrate effects in terms of both surface coverage and work function shift.  相似文献   

17.
Doping of organic semiconductors (OSCs) with transition metal oxides such as molybdenum trioxide (MoO3) has been used as a powerful method to overcome common issues such as contact resistance and low conductivity, which are limiting factors in organic optoelectronic devices. In this study, the mechanism and efficiency of MoO3‐induced p‐type doping in OSCs are investigated by means of simultaneous electrical and spectroscopic measurements on lateral diodes. It is demonstrated that energetic changes in the MoO3 energy levels outside vacuum can limit charge‐transfer doping and device performance. It is shown and investigated that these changes crucially depend on the OSC. The time evolution of important OSC parameters such as induced charge density, doping concentration and efficiency, conductivity and mobility, is deduced. Moreover, the energetic and chemical changes in MoO3 are investigated via ultraviolet and x‐ray photoemission spectroscopy. Combining these experiments, important conclusions are drawn on the time‐dependence and stability of MoO3‐doping of OSCs, as well as on the processing conditions and device architectures suitable for high‐performance devices.  相似文献   

18.
The exploration of highly efficient nonprecious metal bifunctional electrocatalysts to boost oxygen evolution reaction and oxygen reduction reaction is critical for development of high energy density metal‐air batteries. Herein, a class of CuS/NiS2 interface nanocrystals (INs) catalysts with atomic‐level coupled nanointerface, subtle lattice distortion, and plentiful vacancy defects is reported. The results from temperature‐dependent in situ synchrotron‐based X‐ray absorption fine spectroscopy and electron spin resonance spectroscopy demonstrate that the lattice distortion of 14.7% in CuS/NiS2 caused by the strong Jahn–Teller effect of Cu, the strong atomic‐level coupled interface of CuS and NiS2 domains, and distinct vacancy defects can provide numerous effective active sites for their excellent bifunctional performance. A liquid Zn‐air battery with the CuS/NiS2 INs as air electrode displays a large peak power density (172.4 mW cm?2), a high specific capacity (775 mAh gZn?1), and long cycle life (up to 83 h), making the CuS/NiS2 INs among the best bifunctional catalysts for Zn‐air battery. More remarkably, the flexible CuS/NiS2 INs‐based solid‐state Zn‐air batteries can power the LED after twisting, making them be promising in portable and wearable electronic devices.  相似文献   

19.
The development of environmentally benign thermoelectric materials with high energy conversion efficiency (ZT) continues to be a long-standing challenge. So far, high ZT has been achieved using heavy elements to reduce lattice thermal conductivity (κlat). However, it is not preferred to use such elements because of their environmental load and high material cost. Here a new approach utilizing hydride anion (H) substitution to oxide ion is proposed for ZT enhancement in thermoelectric oxide SrTiO3 bulk polycrystals. Light element H substitution largely reduces κlat from 8.2 W/(mK) of SrTiO3 to 3.5 W/(mK) for SrTiO3−xHx with x = 0.216. The mass difference effect on phonon scattering is small in the SrTiO3−xHx, while local structure distortion arising from the distributed Ti−(O,H) bond lengths strongly enhances phonon scattering. The polycrystalline SrTiO3−xHx shows high electronic conductivity comparable to La-doped SrTiO3 single crystal because the H substitution does not form a grain boundary potential barrier and thus suppresses electron scattering. As a consequence, SrTiO3−xHx bulk exhibits maximum ZT = 0.11 at room temperature and the ZT value increases continuously up to 0.22 at T = 657 K. The H substitution idea offers a new approach for ZT enhancement in thermoelectric materials without utilizing heavy elements.  相似文献   

20.
Hybrid semiconductor‐polymer nanostructured solar cells hold the promise of photovoltaic energy conversion based on abundant and nontoxic materials and scalable manufacturing processes. After a decade of intense research activity, hybrid solar cells still exhibit low short‐circuit currents and moderate open‐circuit voltages. These bottlenecks call for a detailed understanding of the physics underlying the device operation at the nanoscale. Using first‐principles calculations the ideal energy‐level alignment of hybrid solar cell interfaces based on the wide bandgap semiconductor ZnO and the polymer poly(3‐hexylthiophene) (P3HT) is investigated. The interfacial charge transfer is quantified and it is shown that this effect increases the ideal open‐circuit voltage with respect to the electron‐affinity rule by as much as 0.5 V. The results of this work suggests that there is significant room for optimizing this class of excitonic solar cells by tailoring the semiconductor/polymer interface at the nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号