首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time‐of‐flight (TOF) MS. To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI‐TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H]+) and radical cations (M+.) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O]+. The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1–2 mm/zunits (m/z 80–500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)‐MS and GC/chemical ionisation (CI)‐MS to understand the capability of GC/APCI‐MS relative to these two firmly established techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Comprehensive gas chromatography (GC) has emerged in recent years as the technique of choice for the analysis of volatile and semivolatile compounds in complex matrices. Coupling it with high‐resolution mass spectrometry (MS) makes a powerful tool for identification and quantification of organic compounds. The results obtained in this study showed a significant improvement by using GC×GC‐EI‐MS in comparison with GC‐EI‐MS; the separation of chromatogram peaks was highly improved, which facilitated detection and identification. However, the limitation of Orbitrap mass analyzer compared with time‐of‐flight analyzer is the data acquisition rate; the frequency average was about 25 Hz at a mass resolving power of 15.000, which is barely sufficient for the proper reconstruction of the narrowest chromatographic peaks. On the other hand, the different spectra obtained in this study showed an average mass accuracy of about 1 ppm. Within this average mass accuracy, some reasonable elemental compositions can be proposed and combined with characteristic fragment ions, and the molecules can be identified with precision. At a mass resolving power of 7.500, the scan rate reaches 43 Hz and the GC×GC‐MS peaks can be represented by more than 10 data points, which should be sufficient for quantification. The GC×GC‐MS was also applied to analyze a cellulose bio‐oil sample. Following this, a highly resolved chromatogram was obtained, allowing EI mass spectra containing molecular and fragment ions of many distinct molecules present in the sample to be identified.  相似文献   

3.
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC‐(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole‐TOF‐MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MSE approach). In the low‐energy function, limited fragmentation took place, whereas for the high‐energy function, fragmentation was enhanced. For less volatile unknowns, ultra‐high pressure liquid chromatography‐quadrupole‐TOF‐MS was additionally applied. Using a home‐made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

5.
In the past, the preferred strategy for the identification of unknown compounds was to search in an appropriate mass spectral database for spectra obtained using either electron ionisation (GC‐MS analyses) or collision‐induced dissociation (LC‐MS/MS analyses). Recently, an increase has been seen in the use of accurate mass instruments and spectra‐less databases, based on monoisotopic accurate mass alone. In this article, we describe a systematic workflow for the screening and identification of new flame retardants. This approach utilises LC‐quadrupole‐time‐of‐flight MS and spectra‐less databases based only on monoisotopic accurate mass for the identification of ‘unknowns’. An in‐house database was built, and the input parameters used in the data analysis process were optimised for flame retardant chemicals, so that it can be easily transferred to other laboratories. The procedure was successfully applied to dust, foam and textiles from car interiors and indoor consumer products. The developed method was demonstrated for the main new flame retardant present in Antiblaze V6 and for the three unreported reaction by‐products/impurities present in the same technical mixture. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A new type of electron ionization LC‐MS with supersonic molecular beams (EI‐LC‐MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly‐though EI ion source as vibrationally cold molecules in the SMB, resulting in ‘Cold EI’ (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI‐LC‐MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI‐LC‐MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non‐polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS‐MS as an alternative to lengthy LC‐MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of EI‐LC‐MS with SMB are listed and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Oxazepam has been subjected to controlled degradation at 100°C for 3 h in 0.5 M HCl and 0.5 M NaOH. Following neutralisation of the degradation mixture and removal of salts by solid‐phase extraction (SPE), isocratic high‐performance liquid chromatography/mass spectrometry (HPLC/MS) using water/methanol (25:75 v/v) as the mobile phase was carried out using a flow diverter to collect fractions prior to their characterisation by electrospray ionisation multi‐stage mass spectrometry (ESI‐MSn) and proposal of the corresponding fragmentation patterns. The elemental compositions of the degradation products and their MS fragments were evaluated using electrospray ionisation quadrupole time‐of‐flight tandem mass spectrometry (ESI‐QTOF‐MS/MS) which was then used to support the proposed fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous to that of liquid CI in ion traps with internal ionization, and is in marked contrast to that of CI with most other standard GC/MS systems that require a change of the ion source.  相似文献   

10.
Exact mass capabilities of time-of-flight (TOF) mass spectrometry along with other mass spectrometric techniques have been evaluated to elucidate a complete range of dichlofenac phototransformation products. Photolysis experiments with diclofenac in water under direct solar irradiation were performed to characterise the main phototransformation products generated and to determine their stability. Photolysis experiments were performed in both demineralised water and reconstructed standard freshwater. Samples were extracted before analysis by solid phase extraction (SPE) with Oasis HLB and MAX cartridges. Separation and identification of the transformation products were accomplished by the combined use of gas chromatography-mass spectrometry (GC/MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOFMS). Both techniques provided complementary information that enabled the identification of 13 phototransformation products. Six of them were identified by GC/MS through the structural information provided by the full scan mass spectra obtained under electron impact (EI) ionisation and the confirmation of the molecular mass provided by positive chemical ionisation (PCI) analyses. Accurate mass measurements obtained by LC/TOFMS provided the elucidation of seven polar transformation products. The low mass error observed (<2 ppm) enabled the assignment of highly probable empirical formulas as well as identification of a process dimerisation route. The photoproducts identified demonstrated that photolysis of diclofenac occurs by two main routes. One is the consequence of the initial photocyclisation of diclofenac into carbazole derivatives. The other route goes through the initial decarboxilation of diclofenac and further oxidation of the alkyl-chain, which are typical photolytic process reactions. The main photoproduct identified was 8-chloro-9H-carbazole-1yl-acetic acid.  相似文献   

11.
New data on sample preparation and matrix selection for the fast screening of androgenic anabolic steroids (AAS) by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) is presented. The rapid screening of 15 steroids included in the World Anti‐Doping Agency (WADA) prohibited list using MALDI was evaluated. Nine organic and two inorganic matrices were assessed in order to determine the best matrix for steroid identification in terms of ionisation yield and interference by characteristic matrix ions. The best results were achieved for the organic matrices 2‐(4‐hydroxyphenylazo)benzoic acid (HABA) and trans‐3‐indoleacrylic acid (IAA). Good signals for all the steroids studied were obtained for concentrations as low as 0.010 and 0.050 µg/mL on the MALDI sample plate for the HABA and IAA matrices, respectively. For these two matrices, the sensitivity achieved by MALDI is comparable with the sensitivity achieved by gas chromatography/mass spectrometry (GC/MS), which is the conventional technique used for AAS detection. Furthermore, the accuracy and precision obtained with MALDI are very good, since an internal mass calibration is performed with the matrix ions. For the inorganic matrices, laser fluences higher than those used with organic matrices are required to obtain good MALDI signals. When inorganic matrices were used in combination with glycerol as a dispersing agent, an important reduction of the background noise was observed. Urine samples spiked with the study compounds were processed by solid‐phase extraction (SPE) and the screening was consistently positive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A method using comprehensive 2DGC with flame ionisation detection was developed to quantify 17 low‐molecular‐weight oxygenates in three different matrices, namely water, oil and gas, using a single calibration. The method was required for the pilot‐plant experiments of a chemical process unit. From an analytical perspective, the first task was to find a suitable analytical method with sufficient selectivity and sensitivity to analyse the selected oxygenates at low levels in the presence of high levels of hydrocarbons. The second was the accurate quantitation of oxygenates in the water, oil and gas fractions, using the same instrument and calibration. Both these requirements were met by using comprehensive 2DGC in the inverse configuration and calibrating the detector with the number of moles injected versus response. The method was successfully applied for the characterisation of the reactor product stream of the chemical process unit and made it possible to determine the fate of the selected oxygenates after passing through the reactor. The development of the method and some of the results are described in this paper.  相似文献   

13.
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI).  相似文献   

14.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Pharmaceuticals require careful and precise determination of their impurities that might harm the user upon consumption. Although today, the most common technique for impurities identification is liquid chromatography‐mass spectrometry (LC‐MS/MS), it has several downsides due to the nature of the ionization method. Also, the analyses in many cases are targeted thus despite being present, some of the compounds will not be revealed. In this paper, we propose and show a new method for untargeted analysis and identification of impurities in active pharmaceutical ingredients (APIs). The instrument used for these analyses is a novel electron ionization (EI) LC‐MS with supersonic molecular beams (SMB). The EI‐LC‐MS‐SMB was implemented for analyses of several drug samples spiked with an impurity. The instrument provides EI mass spectra with enhanced molecular ions, named Cold EI, which increases the identification probabilities when the compound is identified with the aid of an EI library like National Institute of Standards and Technology (NIST). We analyzed ibuprofen and its impurities, and both the API and the expected impurity were identified with names and structures by the NIST library. Moreover, other unexpected impurities were found and identified proving the ability of the EI‐LC‐MS‐SMB system for truly untargeted analysis. The results show a broad dynamic range of four orders of magnitude at the same run with a signal‐to‐noise ratio of over 10 000 for the API and almost uniform response.  相似文献   

16.
A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.  相似文献   

17.
The electron ionisation (EI) mass spectra of a series of bridgehead‐fused Δ2‐norbornanethiazolines, a new class of bridgehead‐norbornane derivatives, have been studied and their cleavage mechanisms rationalised on the basis of the substituent shifts as well as on the identification of relevant peaks through accurate mass measurements and collision‐induced dissociation tandem mass spectrometric experiments. The fragmentation patterns of isomeric pairs of 6,6‐ and 10,10‐dimethylnorbornanethiazolines are almost identical, probably due to an initial isomerisation of molecular ion previous to the fragmentation. In general, the dominant peaks in the spectra of all the studied compounds originate from initial α‐cleavages of C(5)–C(6) or C(1)–C(10) bonds, followed by concomitant homolytic cleavage of C(1)–C(9) and C(7)–C(10) bonds. The driving force for this fragmentation pathway, directed by the gem‐dimethyl group, is the formation of a highly stabilised thiazolilmethyl cation which constitutes the base peak in all the spectra and allows the identification of these interesting ligands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Keshet  Uri  Fialkov  Alexander B.  Alon  Tal  Amirav  Aviv 《Chromatographia》2016,79(11):741-754

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

  相似文献   

19.
An accurate and precise method for the quantification of 11‐nor‐Δ9‐tetrahydrocannabinol‐9‐carboxylic acid (THCA) in urine by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for doping analysis purposes has been developed. The method involves the use of only 200 µL of urine and the use of D9‐THCA as internal standard. No extraction procedure is used. The urine samples are hydrolysed using sodium hydroxide and diluted with a mixture of methanol/glacial acetic acid (1:1). Chromatographic separation is achieved using a C8 column with gradient elution. All MS and MS/MS parameters were optimised in both positive and negative electrospray ionisation modes. For the identification and the quantification of THCA three product ions are monitored in both ionisation modes. The method is linear over the studied range (5–40 ng/mL), with satisfactory intra‐and inter‐assay precision, and the relative standard deviations (RSDs) are lower than 15%. Good accuracy is achieved with bias less than 10% at all levels tested. No significant matrix effects are observed. The selectivity and specificity are satisfactory, and no interferences are detected. The LC/MS/MS method was applied for the analysis of 48 real urine samples previously analysed with a routine gas chromatography/mass spectrometry (GC/MS) method. A good correlation between the two methods was obtained (r2 > 0.98) with a slope close to 1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Ketamine is an anaesthetic compound used in human and veterinary medicine with hallucinogen properties that have resulted in its increased illicit use by teenagers at rave parties. Although several gas chromatography/mass spectrometry (GC/MS) methods have been reported for the quantification of the drug both in urine and in hair, its electron ionization (EI) fragmentation after derivatization with different reagents has been not yet fully investigated. The present work reports the study of the fragmentation of ketamine, derivatized with heptafluorobutyric anhydride (HFBA‐Ket), using gas chromatography/electron ionization mass spectrometry (GC/EI‐MS). The complete characterization of the fragmentation pattern represented an intriguing exercise and required tandem mass spectrometry (MSn) experiments, high‐resolution accurate mass measurements and the use of deuterated d4‐ketamine to corroborate the proposed structures and to characterize the fragment ions carrying the unchanged aromatic moiety. Extensive fragmentation was observed, mainly located at the cyclohexanone ring followed by rearrangement of the fragment ions, as confirmed by the mass spectra obtained from the deuterated molecule. The GC/EI‐MS analysis of HFBA‐Ket will represent a useful tool in forensic science since high‐throughput analyses are enabled, preserving both the GC stationary phase and the cleanliness of the mass spectrometer ion optics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号