首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
1‐Methyl imidazole‐based ionic liquid‐stabilized silica‐coated Fe3O4 magnetic nanoparticles [Fe3O4@SiO2@(CH2)3‐1‐methyl imidazole]HSO4 as a solid acid magnetic nanocatalyst was explored in the synthesis of pyrano[2,3‐d]pyrimidine derivatives. Pyrano[2,3‐d]pyrimidine derivatives were synthesized by a highly efficient three‐component reaction of various benzaldehydes, malononitrile, and barbituric acid. The catalyst was characterized by using various analysis techniques such as Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry‐thermogravimetry analysis (DSC‐TGA), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM).  相似文献   

3.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

4.
Butane‐1‐sulfonic acid immobilized on magnetic Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2‐Sultone) was easily prepared via direct ring opening of 1,4‐butanesultone with nanomagnetic Fe3O4@SiO2. The prepared reagent was characterized and used for the efficient promotion of the synthesis of barbituric acid and pyrano[2,3‐d] pyrimidine derivatives. All reactions were performed under mild and completely heterogeneous reaction conditions affording products in good to high yields. The catalyst is easily isolated from the reaction mixture by magnetic decantation and can be reused at least eight times without significant loss in activity.  相似文献   

5.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The Stille cross‐coupling reaction of organostannanes with aryl halides was achieved in the presence of a catalytic amount of MCM‐41‐supported mercapto palladium(0) complex (1 mol%) in DMF? H2O (9:1) under air atmosphere in good to high yields. This MCM‐41‐supported palladium catalyst can be reused at least 10 times without any decrease in activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A convenient method for the synthesis of pyrido[2,3‐d]pyrimidines by using the novel nano‐magnetic silica‐bonded S‐sulfonic acid[Fe3O4@SiO2@(CH2)3S–SO3H] as an efficient and recyclable catalyst under neat conditions is described. The major advantages of the present methodology are high yield, short reaction time, and reusability of the catalyst. Furthermore, the nano‐magnetic silica‐bonded S‐sulfonic acid was fully characterized by using various techniques such as FT‐IR, TG/DTG, DTA, EDX, μXRF, XRD, HRTEM, SEM, SEM elemental mapping, XPS, and N2 physisorption. The results obtained from this research support the idea of rational design, synthesis, and applications of task‐specific and reusable catalysts for the preparation of various polynitrogenated heterocyclic compounds containing 1,4‐dihydropyridine moieties.  相似文献   

8.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

9.
Palladium nanoparticle‐incorporated mesoporous organosilica (MCM‐41‐Crown.Pd) was synthesized via the grafting of dibenzo‐18‐crown‐6‐ether moieties on the MCM‐41 surface, followed by reaction of the nanocomposite with palladium acetate and then its reduction in ethanol. The cavity of the immobilized dibenzo‐18‐crown‐6 as host material can stabilize the palladium nanoparticles effectively and prevent their aggregation and separation from the surface. The structure of the nanocomposite was characterized using various techniques. The catalytic properties of the nanocomposite in the Heck coupling reaction, one of the most useful transformations in organic synthesis, between aryl halides and olefins in water were also explored. The main advantages of the method are low cost, high yields, easy work‐up and short reaction time. The nanocatalyst can be easily separated from a reaction mixture and was successfully examined for seven runs, with a slight loss of catalytic activity.  相似文献   

10.
A porphyrin‐based polymer with high surface area was synthesized using 5,10,15,20‐tetraphenylporphyrin through a one‐pot Friedel–Crafts alkylation reaction. Pd(II) was successfully supported on this polymer. This strategy provides an easy approach to produce highly stable Pd–porphyrin‐based polymer. The resulting Pd catalyst was characterized using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and N2 adsorption–desorption measurements. This porphyrin‐based polymer‐supported Pd was used as a heterogeneous catalyst for Suzuki–Miyaura coupling reaction in water. The results demonstrated that this Pd catalyst indeed exhibited excellent catalytic activity and recycling performance in water, even for inactive aryl chloride substrate. A new heterogeneous strategy for catalyzing the Suzuki–Miyaura reaction in water is provided.  相似文献   

11.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

12.
In this study, library substituted benzodiazepines was synthesized using molecular ionic liquid supported on Fe‐MCM‐41 nanocomposites (Fe‐MCM‐41‐IL). This protocol using ultrasound provided advantages such as rapid, clean conversion and simplicity in experimental setup that led to rapid generation of benzodiazepines under mild condition. The catalyst can be easily isolated by using an external magnetic field and reused in the next reaction up to six cycles without obvious activity decreasing.  相似文献   

13.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

14.
The amino acid ionic liquid tetrabutylammonium asparaginate (TBAAsp) was immobilized on titanomagnetite (Fe3?xTixO4) nanoparticles in a facile one‐pot process using an organosilane compound (TMSP) as spacer. The modified Fe3?xTixO4@TMSP@TBAAsp magnetic nanoparticles were characterized using Fourier transform spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The resulting analytical data clearly verified the successful immobilization of the ionic liquid on the magnetic substrate. The magnetic ionic liquid‐based nanoparticles exhibited high catalytic activity in the synthesis of 1,4‐dihydropyrano[2,3‐c]pyrazole derivatives via a one‐pot three‐component reaction under mild reaction conditions. The catalyst was easily recycled and reused for at least six runs without any considerable loss of activity.  相似文献   

15.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A novel t hiourea dioxide‐functionalized hydroxyapatite‐encapsulated hybrid core‐shell γ‐Fe2O3@HAp‐TUD nanoparticles (MNPs) were prepared and characterized by FT‐IR, EDX, SEM, XRD, TGA and VSM analytical methods. The catalytic activity of these MNPs was evaluated through one‐pot three‐component reactions between various substituted aldehydes, malononitrile and 3‐cyano‐6‐hydroxy‐4‐methyl‐pyridin‐2(1H )‐one to afford the corresponding pyrano[2,3‐b]pyridines in high yields under mild and solvent‐free conditions. The catalyst can be easily recycled in a magnetic field and reused in five consecutive runs without significant decrease of its catalytic activity.  相似文献   

17.
The heterogeneous cross‐coupling reaction of aryl iodides with diphenylphosphine was achieved in toluene at 115 °C in the presence of 10 mol% of phenanthroline‐functionalized MCM‐41‐supported copper (I) complex (Phen‐MCM‐41‐CuI) with Cs2CO3 as base, yielding various unsymmetric triarylphosphines in good to excellent yields. This protocol can tolerate a wide range of functional groups and does not need the use of expensive additives or harsh reaction conditions. This heterogeneous Cu (I) catalyst exhibited the same catalytic activity as homogeneous CuI/Phen system, and could easily be recovered by a simple filtration of the reaction solution and recycled up to seven times without significant loss of activity.  相似文献   

18.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We report the preparation of supported palladium(II) acetylacetonate, Pd(acac)2, coordinated by pendant acac groups, by reacting palladium acetate with acac‐functionalized doubly silica‐coated magnetic nanoparticles. The solid support consists of an amorphous silica‐coated (as magnetite protecting layer) magnetite core and a mesoporous silica shell. The magnetically separable palladium nanocatalyst is active for Suzuki cross‐coupling reaction of acyl halides with boronic acids. The catalyst is simply isolated from the reaction mixture that allows fast and efficient isolation of product and catalyst compared to traditional methods that generally make use of time‐ and solvent‐consuming procedures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Isatin‐SO3H coated on amino propyl modified magnetic nanoparticles (Fe3O4@APTES@isatin‐SO3H) is found to be a novel, efficient, and reusable magnetic nanocatalyst, and characterized by FT‐IR, SEM, TEM, XRD, EDX, VSM, and TGA analysis. The magnetic nanocatalyst demonstrated outstanding performance in synthesis of pyrano[2,3‐d] pyrimidines derivatives via one‐pot three‐component reaction of various aromatic aldehydes 1, malononitrile 2, and barbituric acid 3 under reflux conditions in mixture of H2O:EtOH (1:1) as solvent. Easy workup procedure, short reaction time, high yield, simple preparation and easy recovery of the catalyst, mild reaction conditions are some advantages of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号