首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous chitosan‐grafted iron tetra (4‐carboxyphenyl) porphyrin catalyst (Fe TCPP/mesp‐CTS) was prepared and investigated as a practical model for the nano‐cavity and coordinate regulation‐catalysis(CRC) function in cytochrome P‐450 enzyme. Fe TCPP/mesp‐CTS was characterized by X‐ray Diffraction (XRD), Thermogravimetry (TG), Ultraviolet–visible spectroscopy(UV‐Vis), Ultraviolet–visible– Diffuse reflectance spectroscopy (UV‐DRS), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray photoelectron spectroscopy (XPS) techniques. The catalytic activity of Fe TCPP/mesp‐CTS for ethylbenzene oxidation was investigated and it was proved to be a better catalyst than Fe TCPP/macp‐CTS based on the ethylbenzene conversion, turnover numbers(TON), and the reusability. These results are attributed to the mesocavity and CRC of amino group in Fe TCPP/mesp‐CTS. The highest ethylbenzene conversion and yields of ketone and alcohol were 24.4% and 18.2%, respectively.  相似文献   

2.
A simple strategy to rationally immobilize metalloporphyrin sites into porous mixed‐metal–organic framework (M′MOF) materials by a metalloligand approach has been developed to mimic cytochrome P450 monooxygenases in a biological system. The synthesized porous M′MOF of [Zn2(MnOH–TCPP)(DPNI)] ? 0.5 DMF ? EtOH ? 5.5 H2O ( CZJ‐1 ; CZJ=Chemistry Department of Zhejiang University; TCPP=tetrakis(4‐carboxyphenyl)porphyrin); DPNI=N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide) has the type of doubly interpenetrated cubic α‐Po topology in which the basic Zn2(COO)4 paddle‐wheel clusters are bridged by metalloporphyrin to form two‐dimensional sheets that are further bridged by the organic pillar linker DPNI to form a three‐dimensional porous structure. The porosity of CZJ‐1 has been established by both crystallographic studies and gas‐sorption isotherms. CZJ‐1 exhibits significantly high catalytic oxidation of cyclohexane with conversion of 94 % to the mixture of cyclohexanone (K) and cyclohexanol (A) (so‐called K–A oil) at room temperature. We also provided solid experimental evidence to verify the catalytic reaction that occurred in the pores of the M′MOF catalyst.  相似文献   

3.
Treatment of 5,11,17,23‐tetrakis[(p‐carboxyphenyl)azo]‐25,26,27,28‐tetrahydroxy calix[4]arene ( 2 ) with HCl in DMF or NaOH in MeOH produced 5,11,17,23‐tetrakis[(p‐carboxyphenyl)azo]‐25,26,27,28‐tetrahydroxycalix[4]‐arene·4DMF (2·4DMF) and 5,11,17,23‐tetrakis[(p‐carboxyphenylsodium)azo]‐25,26,27,28‐tetrahydroxycalix[4]‐ arene ( 3 ), respectively, which were characterized by elemental analysis, IR, UV‐vis, 1H NMR and 13C NMR. An X‐ray analysis of 2·4DMF revealed that its calix[4]arene core adopts a flattened cone conformation in which opposed phenyl groups take parallel or sharply inclined positions. The intra‐ and intermolecular hydrogen‐bonding interactions and the π···π interactions form a 2D hydrogen‐bonded wavelike network. Compound 2 had a unique reversible color change in a wide pH range from 1 to 13.5 and showed interesting pH sensing properties.  相似文献   

4.
The mild and efficient oxidation of alcohols with sodium periodate catalyzed by manganese(III) tetrakis(p-sulfonatophenylporphyrinato) acetate, [Mn(TPPS)], supported on polyvinylpyridine, [Mn(TPPS)-PVP], and Amberlite IRA-400, [Mn (TPPS)-Ad IRA-400], at room temperature is reported. The catalysts used in this study showed high activity not only in the oxidation of benzylic and linear alcohols but also in the oxidation of secondary alcohols at room temperature. These catalysts can be reused several times without significant loss of their activity.  相似文献   

5.
A novel luminescent metal–organic framework ( Zn‐TCPP/BPY ) with pillared structure based on 2,3,5,6‐tetrakis(4‐carboxyphenyl)pyrazine (H4TCPP) and 4,4′‐bipyridine (BPY) has been designed and synthesized through a solvothermal reaction. The [Zn2(COO)4] paddlewheel units are linked by TCPP4? ligands to form two‐dimensional layers and further connected by BPY ligands as pillars to construct the twofold interpenetrating three‐dimensional framework. Interestingly, Zn‐TCPP/BPY possesses outstanding stability in organic solvents and water as well as maintains its structural rigidity in aqueous solutions of different pH values (3–12). After activation, Zn‐TCPP/BPY possesses permanent porosity with Brunauer–Emmett–Teller surface area of 630 m2 g–1. Remarkably, Zn‐TCPP/BPY displays excellent fluorescent property in virtue of the aggregation‐induced emission effect of the H4TCPP ligand, which can be highly active and quenched by small amounts of 2,4,6‐trinitrophenol (TNP) and Fe3+ ions. Furthermore, the detection effect of Zn‐TCPP/BPY remains basically the same even after five cycles. The excellent stability, high sensitivity, and recyclability of Zn‐TCPP/BPY make it an outstanding chemical sensor for detecting TNP and Fe3+ ions.  相似文献   

6.
Synthesizing 2D metal–organic frameworks (2D MOFs) in high yields and rational tailoring of the properties in a predictable manner for specific applications is extremely challenging. Now, a series of porphyrin‐based 2D lanthanide MOFs (Ln‐TCPP, Ln=Ce, Sm, Eu, Tb, Yb, TCPP=tetrakis(4‐carboxyphenyl) porphyrin) with different thickness were successfully prepared in a household microwave oven. The as‐prepared 2D Ln‐TCPP nanosheets showed thickness‐dependent photocatalytic performances towards photooxidation of 1,5‐dihydroxynaphthalene (1,5‐DHN) to synthesize juglone. Particularly, the Yb‐TCPP displayed outstanding photodynamic activity to generate O2? and 1O2. This work not only provides fundamental insights into structure designing and property tailoring of 2D MOFs nanosheets, but also pave a new way to improve the photocatalytic performance.  相似文献   

7.
This work reports on the electrooxidation of nitrite using Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines electrodeposited onto a gold electrode. Good catalytic activity (in terms of lowering overpotential) was obtained for these molecules when compared to previously reported MPc catalysts. The catalytic current was found to vary linearly with nitrite concentration in the range employed in this work (0.1-1 mM) and high sensitivities ranging from 6.9 to 9.9 μA mM−1 were observed for all the modified electrodes.  相似文献   

8.
Tetra(4‐carboxyphenyl)‐porphine iron(III) chloride · 2 CH3COOH · 4 H2O ( 1 ) was prepared via a hydrothermal synthesis approach starting from FeCl2 and 5,10,15,20‐tetrakis‐(4‐carboxyphenyl)‐21 H,23 H‐porphine in glacial acetic acid in the presence of KOH as a base and ytterbium(III) acetate as a template. Compound 1 was characterized by single crystal X‐ray diffraction and elemental analysis. Space group: P 1, Z = 2, unit cell dimensions at 200 K: a = 9.282(2), b = 20.239(5), c = 22.239(5) Å, α = 92.49(3), β = 99.87(3), γ = 90.78(3)°, R1 (observed) = 0.132, wR2 (all data) = 0.395. The architecture of the structure is determined by interporphyrin hydrogen bonding. Four iron porphyrin units form a very wide open channel with dimensions of circa 15.7 Å × 15.7 Å. No interpenetrating is observed.  相似文献   

9.
Tetrakis‐5,10,15,20‐(4‐carboxyphenyl)porphyrine (TCPP) was position‐selectively introduced into a diblock copolymer film of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with a sea–island microphase structure. By immersing the PS‐b‐P4VP film into a solution of TCPP/methanol, TCPP was introduced into the island parts comprising P4VP phase. The morphology of the island parts depended on the immersion time and TCPP concentration. A schematic model for the morphological change caused by the phase‐selective introduction of TCPP was proposed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 368–375, 2007  相似文献   

10.
The generation of singlet oxygen (1O2) during photodynamic therapy is limited by the precise cooperation of light, photosensitizer, and oxygen, and the therapeutic efficiency is restricted by the elevated glutathione (GSH) levels in cancer cells. Herein, we report that an ultrathin two‐dimensional metal–organic framework of Cu‐TCPP nanosheets (TCPP=tetrakis(4‐carboxyphenyl)porphyrin) can selectively generate 1O2 in a tumor microenvironment. This process is based on the peroxidation of the TCPP ligand by acidic H2O2 followed by reduction to peroxyl radicals under the action of the peroxidase‐like nanosheets and Cu2+, and their spontaneous recombination reaction by the Russell mechanism. In addition, the nanosheets can also deplete GSH. Consequently, the Cu‐TCPP nanosheets can selectively destroy tumor cells with high efficiency, constituting an attractive way to overcome current limitations of photodynamic therapy.  相似文献   

11.
Porphyrin metal‐organic frameworks (PMOFs) are emerging as heterogeneous photocatalysts owing to the well‐designed frameworks incorporated with powerful light‐harvesting porphyrin chromophores. The porous and stable framework Ir?PCN‐224 (which is also denoted as Ir?PMOF‐1), which has been prepared by the self‐assembly of Ir(TCPP)Cl (TCPP=tetrakis(4‐carboxyphenyl)porphyrin) and ZrCl4, is reported herein to be efficient for the aerobic cross‐dehydrogenative carbon?phosphorus coupling reaction, giving rise to a high turn‐over number (TON) of up to 17200 under visible light irradiation (λ≥420 nm). Electron paramagnetic resonance (EPR) experiments disclose that the active species might be the superoxide radical anion (O2.?). Additionally, the intermediate imine cation has been detected by high‐resolution mass spectrometry (HRMS).  相似文献   

12.
The reaction of bromazepam (7‐bromo‐1,3‐dihydro‐5‐(2‐pyridyl)‐2H ‐1,4‐benzodiazepin‐2‐one, BZM) with Cr(III) ( 1 ), Fe(III) ( 2 ) and Ru(III) ( 3 ) salts gives complexes of the type [M(BZM)3]⋅3X (X = Cl or NO3). Structural characterization was extensively carried out using various analytical and spectral tools such as infrared, 1H NMR and UV–visible spectroscopies and magnetic, conductance, elemental and thermal analyses. BZM is a bidentate ligand and interacts with the metal ions via the pyridine and benzodiazepin‐2‐one nitrogen atoms. The magnetic and electronic properties of 2 and 3 are consistent with low‐spin octahedral complexes. The three BZM molecules are non‐isoenergetically coordinated to the metal ions and this is reflected in the values of the second‐order interaction energy. The antibacterial activity was studied using Staphylococcus aureus and Escherichia coli . Coordination of BZM to Cr(III) or Ru(III) ions leads to a marked increase in toxicity with respect to the inactive Fe(III) complex 2 .  相似文献   

13.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

14.
In a stirred batch reaction, Fe(phen)32+ ion behaves differently from Ce(III) or Mn(II) ion in catalyzing the bromate‐driven oscillating reaction with ethyl hydrogen malonate [CH2COOHCOOEt, ethyl hydrogen malonate (EHM)]. The effects of N2 atmosphere, concentrations of bromate ion, EHM, metal ion catalyst, sulfuric acid, and additive (bromide ion or bromomalonic acid) on the pattern of oscillations were investigated. The kinetic study of the reaction of EHM with Ce(IV), Mn(III), or Fe(phen)33+ ion indicates that under aerobic or anaerobic conditions the order of reactivity toward reacting with EHM is Mn(III) > Ce(IV) ≫ Fe(phen)33+, which follows the same trend as that of the malonic acid system. The presence of the ester group in EHM lowers the reactivity of the two methylene hydrogen atoms toward bromination or oxidation by Ce(IV), Mn(III), or Fe(phen)33+ ion. No good oscillations were observed for the BrO3−‐CH2(COOEt)2 reaction catalyzed by Ce(III), Mn(II), or Fe(phen)32+ ion. A discussion of the effects of oxygen on the reactions of malonic acid and its derivatives (RCHCOOHCOOR′) with Ce(IV), Mn(III), or Fe(phen)33+ ion is also presented. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 52–61, 2000  相似文献   

15.
In a stirred batch experiment and under aerobic conditions, ferroin (Fe(phen)32+) behaves differently from Ce(III) or Mn(II) ion as a catalyst for the Belousov‐Zhabotinsky (BZ) reaction with allylmalonic acid (AMA). The effects of bromate ion, AMA, metal‐ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reaction of AMA with Ce(IV), Mn(III), or Fe(phen)33+ ion was studied under aerobic or anaerobic conditions. The order of reactivity of metal ions toward reaction with AMA is Fe(phen)33+ > Mn(III) > Ce(IV) under aerobic conditions whereas it is Mn(III) > Ce(IV) > Fe(phen)33+ under anaerobic conditions. Under aerobic or anaerobic conditions, the order of reactivity of RCH(CO2H)2 (R = H (MA), Me (MeMA), Et (EtMA), allyl (AMA), n‐Bu (BuMA), Ph (PhMA), and Br (BrMA)) is PhMA > MA > BrMA > AMA > MeMA > EtMA > BuMA toward reaction with Ce(IV) ion and it is MA > PhMA > BrMA > MeMA > AMA > EtMA > BuMA toward reaction with Mn(III) ion. Under aerobic conditions, the order of reactivity of RCH(CO2H)2 toward reaction with Fe(phen)33+ ion is PhMA > BrMA > (MeMA, AMA) > (BuMA, EtMA) > MA. The experiment results are rationalized.  相似文献   

16.
Novel Cu(II), Fe(III) and Mn(III) salen‐type metal complexes from (1R,3S)‐N,N′‐bis[salicylidene]‐1,3‐diamino‐1,2,2‐trimethylcyclopentane were synthesized and screened for their in vitro cytotoxic activity against three human cancer cell lines: melanoma, colorectal and breast. In vitro experiments carried out with the three metal complexes show that the copper complex exhibits the highest cytotoxic activity towards all cell lines studied, presenting IC50 values of 3.32–6.71 μM. A significant improvement in the anti‐proliferative effect, by 20‐fold, is observed with this complex when compared with conventional chemotherapy. The relationship between structure, redox characteristics and biological activity in human cancer cell lines was evaluated for the most efficient Cu(II) complex and associated with theoretical calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities.  相似文献   

18.
The cationic pseudo‐square‐planar complex tetrakis(1‐methyl‐2,3‐dihydro‐1H‐imidazole‐2‐thione‐κS)gold(III) trichloride sesquihydrate, [Au(C4H6N2S)4]Cl3·1.5H2O, was isolated as dark‐red crystals from the reaction of chloroauric acid trihydrate (HAuCl4·3H2O) with four equivalents of methimazole in methanol. The AuIII atoms reside at the corners of the unit cell on an inversion center and are bound by the S atoms of four methimazole ligands in a planar arrangement, with S—Au—S bond angles of approximately 90°.  相似文献   

19.
New Mn(III)‐L and Mn(IV)‐L complexes were prepared from the highly lipophilic salophen ligand (L): phenol 2,2′‐[(4,5‐dimethyl‐1,2‐phenylene)bis[(E)‐nitrilomethylidyne]]bis[4,6‐bis(1,1‐dimethylethyl). The prepared complexes were fully characterized and used for the construction of thiocyanate membrane electrodes. Optimized membrane electrodes contained 33.0 mg PVC, 66.0 mg o‐nitrophenyloctylether, 50 or 5 (mole %) tetrakis(trifluoromethyl)phenyl borate and 1 mg Mn(III)‐L (sensor 2) or Mn‐(IV)‐L (sensor 12), respectively. Such electrodes exhibited linear responses toward thiocynate in a concentration range of 10?1–10?5 M and detection limits of 8.3×10?6, 8.9×10?6 M for sensor 2 and 12, respectively. Optimized membrane electrodes exhbited high selectivty toward thiocayante compared to more lipophilic anions. The observed thiocyanate selectivity of the optimized membranes was confirmed by formation constant calculations for Mn(III)‐L and Mn(IV)‐L with SCN?, β=1014.1 and 1012.5, which was measured potentiometrically using the sandwich membrane method. Furthermore, computational study using DFT calculations was performed to at DFT/B3LYP level of theory to confirm the observed selectivity data. The response times were 3 and 0.5 min for low and high concentrations. The lifetimes of the optimized electrodes were ~4–6 weeks. The analytical utility of the optimized membrane electrodes was demonstrated by the analysis of thiocyanate level in different saliva samples.  相似文献   

20.
Mifune M  Harada R  Iwado A  Motohashi N  Saito Y 《Talanta》1998,46(6):1583-1590
Silica gel and glass beads were modified by using acid chloride of metal–tetrakis(4-carboxyphenyl)porphine (M–TCPP) through a peptide bond, and an anion-exchange resin with M–TCPP by ion-exchange reaction and physical adsorption. The carriers modified with Co3+–TCPP proved to accelerate the redox reaction which is catalyzed by glutathione oxidase (GSHOx), while those modified with Mn3+–TCPP exhibited no activity. Formation of GS-SG and hydrogen peroxide was confirmed by means of mass spectroscopy and colored reaction, respectively. The silica gel modified with Co3+–TCPP exhibited the strongest activity among the tested carriers, and was expected to be useful practically as a solid catalyst for the determination of glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号