首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simple preparation of catalysts with superior catalytic activity and good reusability is highly desirable. Herein, we report a novel strategy to construct reduced graphene oxide (rGO)/Pd–Fe3O4@polypyrrole (PPy) catalysts with Pd and Fe3O4 nanoparticles anchored on a rGO nanosheet surface and wrapped in a PPy shell. The synthesis and assembly of both the Pd and Fe3O4 nanoparticles, the preparation of the PPy layer, and the reduction of graphene oxide nanosheets were finished in one step. In the system, the PPy layer not only prevented aggregation of Pd and Fe3O4 nanoparticles, but also generated a synergistic effect with precursor Pd2+ ions, which led to a high dispersity of as‐prepared Pd nanoparticles. Although the procedure was simplified to one step, the catalytic activity and reusability were not sacrificed. In the reduction of 4‐nitrophenol, their catalytic performance was better than that in recent reports. Moreover, the catalysts showed good reusability owing to their magnetic properties.  相似文献   

2.
The unique physicochemical properties of ordered mesoporous transition metal oxides have attracted more and more attention. The hydrolysis process of metal oxide precursors is difficult to control, and it is difficult to synthesize an ordered mesoporous transition metal oxide material using the conventional template method. Ordered mesoporous Pt/Fe3O4–CeO2 heterostructure gel materials with excellent catalytic properties were successfully prepared using aerogel technology and the chemical deposition method. The Pt/Fe3O4–CeO2 material was an n–n combined heterostructured semiconductor material which consisted of a magnetic Fe3O4 layer, a CeO2 core and Pt noble metal doped nanoparticles. A layer of Fe3O4 thin film was formed on the surface of ordered mesoporous Pt/CeO2 gel matrix material using the chemical deposition method. The intriguing heterostructural features could facilitate reactant diffusion and exposure of active sites which could enhance synergistic catalytic effects between the Pt nanoparticles and CeO2 nanoparticles. Compared with Pt/CeO2, the prepared Pt/Fe3O4–CeO2 showed enhanced catalytic activity in the reduction of 4-nitrophenol at room temperature. The catalytic activity of the heterostructure catalysts was systematically investigated using 4-nitrophenol reduction as a model reaction. The results showed that the Pt (0.1%)/Fe3O4–CeO2 sample exhibited the optimal catalytic performance toward catalytic reduction of 4-nitrophenol to 4-aminophenol. The study provided a method for the preparation of heterostructure nanocatalysts with high efficiency, which would be effective for application in various catalytic reactions.  相似文献   

3.
This article reports a simple self‐assembly process for facile one‐step synthesis of novel electromagnetic functionalized polypyrrole (PPy)/Fe3O4 composite nanotubes using p‐toluenesulfonic acid (p‐TSA) as the dopant and FeCl3 as the oxidant. The key trick of the present method is to use FeCl3 as the oxidant for both PPy and Fe3O4 in the same time to synthesize PPy/Fe3O4 composite nanotubes in one‐step. This facile one‐step method is much simpler than the conventional approach using the Fe3O4 nanoparticles as the additives. Compared to the similar composites synthesized using the conventional method, the as‐prepared PPy‐p‐TSA/Fe3O4 composite nanotubes using the facile one‐step self‐assembly process show much higher room‐temperature conductivity. Moreover, the composite nanotubes display interesting ferromagnetic behavior. The electrical properties of the PPy‐p‐TSA/Fe3O4 composite nanotubes are dominated by the amount of FeCl3 while their magnetic properties are controlled by the amount of FeCl2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 320–326, 2010  相似文献   

4.
This study describes the preparation of nanocomposites fabricated from monodispersed iron oxide (Fe3O4) and polypyrrole (PPy) by in situ chemical oxidative polymerization. The monodispersed 4 nm Fe3O4 nanoparticles which served as cores were synthesized using the thermal decomposition of a mixture of Iron (III) acetylacetonate and oleic acid in the presence of high boiling point solvents. The resulting nanoparticles were further dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/Fe3O4 spherical templates that avoid the aggregation of Fe3O4 nanoparticles during the further preparation of the nanocomposites. The Fe3O4/PPy nanocomposites were then synthesized via in situ chemical oxidative polymerization on the surface of the spherical templates. Both field‐emission scanning electron microscopy (FESEM) and high‐resolution transmission electron microscopy (HRTEM) images indicate that the resulting Fe3O4 nanoparticles are close to spherical dots with a particle size of about 4 nm and a standard deviation of less than 5% (4 ± 0.2 nm). Structural and morphological analysis using FESEM and HRTEM showed that the fabricated Fe3O4/PPy nanocomposites are core (Fe3O4)‐shell (PPy) structures. Morphology of the nanocomposites shows a remarkable change from spherical to tube‐like structures as the content of monodispersed Fe3O4 nanoparticles increases from 9% up to 24 wt %. The conductivities of these Fe3O4/PPy nanocomposites are about six times higher than those of PPy without Fe3O4. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4647–4655, 2007  相似文献   

5.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

6.
Fe3O4-supported copper (II) Schiff-Base complex has been synthesized through post-modification with 1,3-phenylenediamine followed by further post-modification with salicylaldehyde and coordination with Cu(II) ion. The resulted Fe3O4@SiO2-imine/phenoxy-Cu(II) magnetic nanoparticles (MNPs) were characterized by various techniques including SEM, TEM, XRD, XPS, EDX, VSM, FT-IR, and ICP. The catalytic activity as a magnetically recyclable heterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4H-chromene derivatives was examined. The catalyst is efficient in the reaction and can be recovered by magnetic separation and recycled several times without significant loss in the catalytic activity.  相似文献   

7.
The use of nanobiocatalysts, with the combination of nanotechnology and biotechnology, is considered as an exciting and rapidly emerging area. The use of iron oxide magnetic nanoparticles, as enzyme immobilization carriers, has drawn great attention because of their unique properties, such as controllable particle size, large surface area, modifiable surface, and easy recovery. In this study, various γ‐Fe2O3/Fe3O4 magnetic nanoparticles with immobilized proteases were successfully prepared by three different immobilization strategies including A) direct binding, B) with thiophene as a linker, and C) with triazole as a linker. The oligopeptides syntheses catalyzed by these magnetic nanoparticles (MNPs) with immobilized proteases were systematically studied. Our results show that i) for magnetic nanoparticles immobilized α‐chymotrypsin, both immobilization strategies A and B furnished good reusability for the Z‐Tyr‐Gly‐Gly‐OEt synthesis, the MNPs enzymes can be readily used at least five times without significant loss of its catalytic performance: ii) In the case of Z‐Asp‐Phe‐OMe synthesis catalyzed by magnetic nanoparticles immobilized thermolysin, immobilization Strategy B provided the best recyclability: iii) For the immobilized papain, although Strategy A or B afforded an immobilized enzyme for the first cycle of Z‐Ala‐Leu‐NHNHPh synthesis in good yield, their subsequent catalytic activity decreased rapidly. In general, the γ‐Fe2O3 MNPs were better for use as an immobilization matrix, rather than the Fe3O4 MNPs, owing to their smaller particle size and higher surface area.  相似文献   

8.
李海芳  杨红云  张英  王培龙  林金明 《色谱》2014,32(4):413-418
通过化学键合的方法制备单壁碳纳米管包覆的四氧化三铁(Fe3O4/CNTs)磁性复合纳米粒子。首先用水热法合成磁性Fe3O4纳米粒子,并进行硅烷氨基化处理,羧基化的单壁碳纳米管通过1-(3-二甲基氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)交联剂反应修饰到Fe3O4纳米颗粒表面。合成的Fe3O4/CNTs复合纳米粒子具有很高的磁响应度和很好的分散能力,是一种很好的分散固相萃取剂。本研究将合成的Fe3O4/CNTs纳米粒子用于分散固相微萃取富集牛奶中的香精添加剂,并与高效液相色谱分析联用,实现了香兰素和乙基香兰素的快速高效富集和高灵敏度检测,两者的检出限达10 μg/L,回收率大于92%。本研究表明,合成的Fe3O4/CNTs磁性复合粒子是一种很好的奶制品中香兰素添加剂的样品前处理富集材料。  相似文献   

9.
A facile, green and efficient method for the immobilization of MoO2–Salen onto graphene hybridized with glucose‐coated magnetic Fe3O4 nanoparticles is proposed to fabricate a magnetic organic–inorganic hybrid heterogeneous RGO/Fe3O4@C‐Salen‐MoO2 catalyst for the epoxidation of cyclooctene and geraniol using tert ‐butyl hydroperoxide or H2O2 as oxidant. Carbon‐coated Fe3O4 can improve the stability and add functional ─OH groups on the surface of Fe3O4. The fabricated composite exhibited good performance due to good dispersion of MoO2–Salen active sites. The catalyst can be easily separated from the reaction system using a permanent magnet and used three times without significantly losing its catalytic activity and selectivity.  相似文献   

10.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   

11.
Fe3O4 anisotropic nanostructures that exhibit excellent catalytic performance are rarely used to catalyze Fenton‐like reactions because of the inevitable drawbacks resulting from traditional preparation methods. In this study, a facile, nontoxic, water‐based approach is developed for directly regulating a series of anisotropic morphologies of Fe3O4 nanostructures in a hydrogel matrix. In having the advantages of both the catalytic activity of Fe3O4 and the adsorptive capacity of an anionic polymer network, the hybrid nanocomposites have the capability to effect the rapid removal of cationic dyes, such as methylene blue, from water samples. Perhaps more interestingly, hybrid nanocomposites loaded with Fe3O4 nanorods exhibit the highest catalytic activity compared to those composed of nanoneedles and nanooctahedra, revealing the important role of nanostructure morphology. By means of scanning electrochemical microscopy, it is revealed that Fe3O4 nanorods can efficiently catalyze H2O2 decomposition and thus generate more free radicals (.OH, .HO2) for methylene blue degradation, which might account for their high catalytic activity.  相似文献   

12.
In this work, a new Fe3O4/AlFe/Te nanocomposite was synthesized by a one‐step sol–gel method. The Fe3O4 magnetic nanoparticles (MNPs) were prepared and then mixed with aluminum telluride (Al2Te3) in an alkali medium to produce the desired catalyst. After characterization of the Fe3O4/AlFe/Te nanocomposite by SEM, TEM, EDS, XRD, and ICP analyses, it was used in the esterification reaction. This heterogeneous catalyst showed high catalytic activity in the esterification of commercially available carboxylic acids with various alcohols to produce the desired esters at high conversions under neat conditions. The Fe3O4/AlFe/Te nanocomposites were separated from the reaction mixture via an external magnet and re‐used 8 times without significant loss of catalytic activity.  相似文献   

13.
Immobilized sulfuric acid on magnetic Fe3O4 nanoparticles (Fe3O4 MNPs‐OSO3H) as a new solid acid nanocomposite was successfully synthesized and its catalytic activity in a series of condensation reactions was studied. High catalytic activity, simple separation from reaction mixture by an external magnet and good reusability are several eco‐friendly advantages of this catalytic system. It is noteworthy that this catalytic system is applicable to a wide range of spectrum of aromatic aldehydes, and the desired products were obtained in good to excellent yields under mild conditions. The use of ecofriendly solvents makes also this synthetic protocol ideal and fascinating from the environmental point of view.  相似文献   

14.
Magnetically separable Fe3O4 nanoparticles endow with an efficient and economic route for the synthesis of propargylamines by the three-component coupling of aldehyde, amine, and alkyne through C-H activation. The reaction is especially effective for reactions involving aliphatic aldehydes and no additional co-catalyst or activator is required. High catalytic activity and ease of recovery using an external magnetic field are additional eco-friendly attributes of this catalytic system. The catalyst was recycled for five times without a significant loss of catalytic activity.  相似文献   

15.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

16.
Magnetic cryptomelane-type manganese oxide (OMS-2) nanotubes were successfully prepared by grafting Fe3O4 nanoparticles onto the OMS-2 nanotubes. SEM and HRTEM images show that the prepared magnetic OMS-2 nanotubes exhibited diameters of 100?nm, lengths less than 3.0???m, and the diameters of the Fe3O4 nanoparticles are less than 10?nm. The synthesized material exhibits excellent magnetic separation and catalytic properties for the degradation of methylene blue (MB) by a Fenton-like reaction.  相似文献   

17.
A new dioxomolybdenum (VI) complex with tridentate hydrazone Schiff base ligand (H2L) derived from 2‐hydroxy‐5‐nitrobenzaldehyde and benzhydrazide was synthesized and designated as [MoO2L (DMF)]·2H2O. The Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) nanocatalyst was successfully prepared by grafting H2L ligand on modified Fe3O4 nanoparticles followed by reacting with MoO2 (acac)2. The complex and nanocatalyst were characterized by various techniques such as elemental analysis, mass, FT‐IR, UV–Vis, 1H NMR, 13C{1H}‐NMR, TGA, XRD, XPS, TEM, SEM and VSM. The catalytic activity of [MoO2L (DMF)]2H2O and Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) were evaluated for the oxidation of various alkenes (cyclooctene, norbornene, cyclohexene, styrene and α‐methyl styrene) in the presence of tert‐butylhydroperoxide as oxidant. The results revealed that the catalysts were especially efficient for oxidation of cyclooctene and norbornene with 100% selectivity towards corresponding epoxide product. Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) showed higher catalytic activity, shorter reaction time and higher turnover number (TON) compared with homogeneous complex [MoO2L (DMF)]·2H2O. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in activity were other advantages of the nanocatalyst.  相似文献   

18.
《中国化学》2017,35(9):1431-1436
Enhancement of Fe3O4 /Au nanoparticles (Fe3O4 /Au NPs ) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4 /Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst‐activated decomposition of H2O2 to •OH radical, which was one of the strong oxidizing species. Besides, Fe3O4 /Au nanoparticles have exhibited satisfying recycle performance for potential industrial application.  相似文献   

19.
Fe3O4/ZIF‐8 nanoparticles were synthesized through a room‐temperature reaction between 2‐methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as‐prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m2g?1). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF‐8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity.  相似文献   

20.
A convenient method for the synthesis of magnetically recyclable palladium nanoparticles (Fe3O4‐Pd) is described. The catalytic application of the Fe3O4‐Pd nanoparticles was explored for the first time in oxidative coupling between amides and olefins. p‐Toluenesulfonic acid plays a significant role in the oxidative amidation reaction. The reaction proceeds at room temperature, resulting in (Z)‐enamides under ambient air in the absence of co‐catalyst and ligand. The superparamagnetic nature of Fe3O4‐Pd facilitates easy, quantitative recovery of the catalyst from a reaction mixture, and it can be reused for up to three consecutive cycles with a slight decrease in catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号