首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

2.
The seleno‐bis (S‐glutathionyl) arsinium ion, [(GS)2AsSe]?, which can be synthesized from arsenite, selenite and glutathione (GSH) at physiological pH, fundamentally links the mammalian metabolism of arsenite with that of selenite and is potentially involved in the chronic toxicity/carcinogenicity of inorganic arsenic. A mammalian metabolite of inorganic arsenic, dimethylarsinic acid, reacts with selenite and GSH in a similar manner to form the dimethyldiselenoarsinate anion, [(CH3)2As(Se)2]?. Since dimethylarsinic acid is an environmentally abundant arsenic compound that could interfere with the mammalian metabolism of the essential trace element selenium via the in vivo formation of [(CH3)2As(Se)2]?, a chromatographic method was developed to rapidly identify this compound in aqueous samples. Using an inductively coupled plasma atomic emission spectrometer (ICP‐AES) as the simultaneous arsenic‐ and selenium‐specific detector, the chromatographic retention behaviour of [(CH3)2As(Se)2]? was investigated on styrene–divinylbenzene‐based high‐performance liquid chromatography (HPLC) columns. With a Hamilton PRP‐1 column as the stationary phase (250 × 4.1 mm ID, equipped with a guard column) and a phosphate‐buffered saline buffer (0.01 mol dm?3, pH 7.4) as the mobile phase, [(CH3)2As(Se)2]? was identified in the column effluent according to its arsenic:selenium molar ratio of 1 : 2. With this stationary phase/mobile phase combination, [(CH3)2As(Se)2]? was baseline‐separated from arsenite, selenite, dimethylarsinate, methylarsonate and low molecular weight thiols (GSH, oxidized GSH) that are frequently encountered in biological samples. Thus, the HPLC–ICP‐AES method developed should be useful for rapid identification and quantification of [(CH3)2As(Se)2]? in biological fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The kinetics and mechanisms of the copper(II)‐catalyzed GSH (glutathione) oxidation are examined in the light of its biological importance and in the use of blood and/or saliva samples for GSH monitoring. The rates of the free thiol consumption were measured spectrophotometrically by reaction with DTNB (5,5′‐dithiobis‐(2‐nitrobenzoic acid)), showing that GSH is not auto‐oxidized by oxygen in the absence of a catalyst. In the presence of Cu2+, reactions with two timescales were observed. The first step (short timescale) involves the fast formation of a copper–glutathione complex by the cysteine thiol. The second step (longer timescale) is the overall oxidation of GSH to GSSG (glutathione disulfide) catalyzed by copper(II). When the initial concentrations of GSH are at least threefold in excess of Cu2+, the rate law is deduced to be ?d[thiol]/dt=k[copper–glutathione complex][O2]0.5[H2O2]?0.5. The 0.5th reaction order with respect to O2 reveals a pre‐equilibrium prior to the rate‐determining step of the GSSG formation. In contrast to [Cu2+] and [O2], the rate of the reactions decreases with increasing concentrations of GSH. This inverse relationship is proposed to be a result of the competing formation of an inactive form of the copper–glutathione complex (binding to glutamic and/or glycine moieties).  相似文献   

4.
A mononuclear copper (II) complex of N‐2‐hydroxyhippuric acid (2HHA), [Cu(HA)(H2O)2], has been synthesized and characterized by spectroscopic and X‐ray powder diffraction studies. Crystal structure of [Cu(HA)(H2O)2] reveals a distorted square‐pyramidal geometry around the metal center. The crystal packing in the complex exhibits a three‐dimensional framework formed by intermolecular O? ; H···O and C? H···O hydrogen bonds. Toxicity and antitumor properties of the complex have been studied in vivo. The complex, capable of depleting glutathione (GSH) at nontoxic doses, may be utilized to sensitize drug‐resistant cells where resistance is due to an elevated level of GSH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
《Electroanalysis》2003,15(14):1177-1184
The metal binding properties of glutathione (GSH) and their fragments γ‐Glu‐Cys and Cys‐Gly are of biological and environmental interest. In this work a differential pulse polarographic study of the Zn2+/γ‐Glu‐Cys and Zn2+/Cys‐Gly systems was carried out for a better understanding of the results obtained in previous studies on the Zn2+‐GSH system. In the case of γ‐Glu‐Cys, complexation with Zn2+ was not detected. In the case of Cys‐Gly, the parallel analysis, by multivariate curve resolution with alternating least squares, of data from the titration of peptide with metal and of metal with peptide suggested the presence of two types of bound Zn2+. This could be attributed to Zn2+ strongly bound to two sulfur atoms of two peptides, to form a complex of 1 : 2 stoichiometry, and to Zn2+ weakly bound to carboxylate and/or amino groups.  相似文献   

6.
Zinc complexes supported by tertiary 1,3,5‐triazapenta‐1,3‐dienate ligand (L1) and N ‐benzoyl‐N′ ‐arylbenzamidinate [aryl =2,6‐diisopropylphenyl (L2), phenyl (L3)] ligands have been synthesized and characterized. The reaction of L1H with ZnEt2 affords a mononuclear zinc complex [L1ZnEt] ( 1 ) in good yield. Tetra nuclear zinc complex [(L1)2Zn4O(OAc)4] ( 2 ) is prepared by treating L1H with one equivalent of Zn(OAc)2 in toluene. Further, dinuclear zinc complexes [L2ZnEt]2 ( 3 ) and [L3ZnEt]2 ( 4 ) are obtained in good yields from L2H and L3H with ZnEt2 in toluene respectively. The complexes 1–4 have been characterized by 1H/13C NMR spectroscopy and single crystal X‐ray diffraction studies. All of the complexes have been explored for their catalytic activity toward the ring‐opening polymerization (ROP) of ε ‐caprolactone. It has been found that complex 1 is an active catalyst for the polymerization of ε ‐caprolactone in presence of a cocatalyst benzyl alcohol (BnOH). While complex 2 is as active as 1 there is no need for a cocatalyst for the polymerization to proceed. Dinuclear zinc complexes 3 and 4 show very high activity for the ROP of ε ‐caprolactone (CL) and rac ‐lactide (LA) without requiring a cocatalyst. The resultant polymers are found to have very high molecular weight (M n = 296 X 103 g mol−1) and relatively narrow polydispersity index compared to 1 and 2 .  相似文献   

7.
Full scan mode of liquid chromatography‐mass spectrometry equipped with an electrospray ionization source offers a chance on global detection of complicated components; however, the scan mode carries significant challenges in rapidly capturing information of analysts. Sodiation‐based in‐source collision was proposed here, as a technique for rapid detecting untargeted analytes in full scan analysis, which was based on the stability of sodium adducts and the nonselectivity of in‐source collision. Then the technique was applied to profile of angular‐type pyranocoumarins (APs) in Radix Peucedani, with full scan analysis performed at two specific in‐source collision energy: a high energy 50 V that is tolerated by the sodium adducts of APs, and a low energy 10 V, at which abundant adducts were offered. The spectra list of two average mass spectra was exported, and stable ions were selected based on the intensity ratio of standards at the two collision energy. Then 27 plausible [M + Na]+ m/z values of APs were acquired after filtering the fragment ion and isotope ions and validating with [M + NH4]+. Eighty‐two APs finally were tentatively identified based on their accurate spectral data of MSn, fragmentation rules, and elution order regardless of their absolute configuration, which included 25 reported APs from Peucedanum praeruptorum Dunn. The technique provided a novel application of sodium adduct in qualitative analysis. And it was valuable for rapidly capturing information of analytes in full scan analysis, not only for APs but also for other compounds that could form sodium adducts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

9.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

10.
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug‐induced toxicity. Reactive metabolite detection using in vitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N‐(2‐bromocarbobenzyloxy)‐GSH (GSH‐Br), for the in vitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. In vitro rat microsomal incubations were performed with GSH and GSH‐Br for each drug with subsequent analysis by liquid chromatography/high‐resolution mass spectrometry on an electrospray time‐of‐flight (ESI‐TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug‐specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH‐Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH‐Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

12.
Three 1‐methyl‐4,4′‐bipyridinium (MQ+)‐based complexes, {[Cd(MQ)(p‐BDC)Br]?H2O}n ( 1 ), {[Cd(MQ)(m‐BDC)(H2O)Br]?3H2O}n ( 2 ) and Cu(MQ)Br2 ( 3 ) (p‐H2BDC = 1,4‐benzenedicarboxylic acid, m‐H2BDC = 1,3‐benzenedicarboxylic acid), have been synthesized and structurally characterized. Compounds 1 and 2 are one‐dimensional coordination polymers constituted of one coordinated MQ+ cation, one coordinated Br? ion and chains of Cd2+ ions connected by deprotonated BDC2? units, which both have photochromism but different decolorization behaviors. The structures and photoresponsive behaviors controlled by auxiliary ligands have been explored. Compound 3 is constituted of one Cu+ center, one MQ+ ligand and two coordinated Br? ions in a ‘V’ configuration, exhibiting no photochromism.  相似文献   

13.
A series of symmetrically n ‐alkyl‐substituted mono benzimidazolium salts with steady increase in n ‐alkyl chain length have been prepared by stepwise N ‐alkylation resulting in salts ( 1 – 8 ). The mono N‐heterocyclic carbene (NHC)–Ag(I) complexes ( 9 – 16 ) derived from the respective salts were readily accessible by in situ deprotonation using Ag2O. All the salts and the complexes were characterized using Fourier transform infrared, 1H NMR, 13C NMR and elemental analyses. Furthermore, the structures of salts 3 and 7 and complex 16 were elucidated using X‐ray crystallography, which established that this mono NHC–Ag(I) complex has a linear bis‐carbene arrangement (C2–Ag). The proligands and the respective Ag(I) complexes were studied for their in vitro anticancer potential against human colon cancer cell line (HCT‐116) using 5‐fluorouracil as a standard. From the IC50 values of all the tested compounds, it can be postulated that there is an influential relationship between the increase in chain length of the wingtip n ‐alkyl groups and the anticancer potential. The proligands 4 – 8 and their respective complexes 12 – 16 with long n ‐alkyl chain lengths (n  = 6–10) showed better IC50 values (0.3–3.9 μM) than the standard drug with the complexes displaying markedly better antiproliferation activity against HCT‐116 cell line than the respective proligands and the standard drug (IC50 = 10.2 μM).  相似文献   

14.
Three Lewis acid–base adducts t‐Bu3Ga–EPh3 (E = P 1 , As 2 , Sb 3 ) were synthesized by reactions of Ph3E and t‐Bu3Ga and characterized by heteronuclear NMR (1H, 13C (31P)) and IR spectroscopy, elemental analysis and single crystal X‐ray diffraction. Their structural parameters are discussed and compared to similar t‐Bu3Ga adducts. The strength of the donor‐acceptor interactions within 1 – 3 was investigated in solution by temperature‐dependent 1H NMR spectroscopy and by quantum chemical calculations.  相似文献   

15.
The reaction of [Pd(CH3CN)2Cl2] with N ‐functional group‐substituted 2‐iminomethylpyrrole‐based ligands, namely N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3,N 3‐dimethylpropane‐1,3‐diamine (LA), N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3‐methyl‐N 3‐phenylpropane‐1,3‐diamine (LB), N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐(methylthio)propan‐1‐amine (LC) and N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐methoxypropan‐1‐amine (LD), resulted in [Ln PdCl] (Ln  = LA–LD) complexes in high yield via N─H bond activation of pyrrole moiety without use of base. [Ln PdCl] existed as monomeric four‐coordinated complexes with slightly distorted square planar geometries around the palladium metal center. The ligands show N ,N ′,X ‐tridentate binding mode to the palladium metal center to give two fused ring metallacycles. [LBPdCl] gave the highest activity (3.29 × 105 g PMMA (mol Pd)−1 h−1) for a methyl methacrylate (MMA) polymerization in the presence of modified methylaluminoxane at 60 °C compared to the other Pd(II) analogues, and resulted in PMMA with higher molecular weight (M w = 7.16 × 105 g mol−1) and narrower polydispersity index. Syndiotactic‐enriched PMMA resulted in all cases.  相似文献   

16.
A series of late transition metal complexes, [(bpma)Co(μ – Cl)Cl] 2 , [(bpma)Cu(μ – Cl)Cl] 2 , [(bpma)Zn(μ – Cl)Cl] 2 and [(bpma)Cd(μ – Br)Br] 2 (where bpma is 4‐bromo‐N‐((pyridin‐2‐yl)methylene)benzenamine) have been synthesized and structurally characterized. The X‐ray structures of dimeric complexes [(bpma)M(μ – X)X] 2 (M = Co, Cu and Zn, X = Cl; M = Cd, X = Br) showed a distorted 5‐coordinate trigonal bipyramidal geometry involving two nitrogen atoms of N,N‐bidentate ligand, two bridged and one terminal halogen atoms. The complex [(bpma)Cu(μ – Cl)Cl] 2 revealed the highest catalytic activity for the polymerisation of methyl methacrylate in the presence of modified methylaluminoxane with an activity of 9.14 × 104 g PMMA/mol·Cu·h at 60 °C and afforded syndiotactic poly (methylmethacrylate) (rr = 0.69).  相似文献   

17.
We report on a cytotoxic half‐sandwich iridium(III) complex [Ir(η5‐Cpph)(phen)(PB)]PF6 ( 1‐PB ), containing a monodentate coordinated O‐donor 4‐phenylbutyrato ligand (PB) belonging to the family of histone deacetylase inhibitors (HDACi); HCpph = (2,3,4,5‐tetramethylcyclopenta‐2,4‐dien‐1‐yl)benzene, phen = 1,?10‐phenanthroline. The solution behaviour studies indicated that complex 1‐PB partially hydrolysed in the mixture of methanol and water (1:4, v/v), resulting in the release of the PB ligand. The extent of the PB ligand release increased in the presence of 2 molar equiv. of the reduced glutathione (GSH). Complex 1‐PB exhibited comparable in vitro cytotoxicity against the cisplatin‐sensitive (IC50 = 15.8 μM) and ‐resistant (IC50 = 13.0 μM) variants of the A2780 human ovarian carcinoma cells, while its potency against the MRC‐5 human normal fibroblast cells was markedly lower (IC50 = 124.1 μM). The cytotoxicity studies revealed an ability of complex 1‐PB to overcome the acquired resistance against cisplatin, with the resistance factor (RF = 0.8) being markedly lower than for complex 1‐Cl (RF = 1.8) and cisplatin (RF = 2.9). The A2780 cell‐based flow cytometry experiments showed different cell cycle modification induced by complex 1‐PB and cisplatin, induction of production of reactive oxygen species, and higher mitochondria membrane potential depleted cell populations after the treatment by complex 1‐PB as compared with cisplatin. In the cell‐free assay, complex 1‐PB inhibited the HDAC activity to ca 66% as compared to ca 74% valid for NaPB. The [Ir(η5‐Cpph)(phen)(H2O)]2+ species ( 1‐OH 2 ), representing the hydrolysis product of both complexes 1‐PB and 1‐Cl , induced hydroxyl radical from the hydrogen peroxide, as proved by the EPR spin trapping studies with the 5‐(diethoxyphosphoryl)‐5‐methyl‐1‐pyrroline‐N‐oxide (DEPMPO) spin trap.  相似文献   

18.
In this work, rare earth tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Sc, Y, La, and Dy), have been used to catalyze the ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA). All the catalysts show high activities and the resulting poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) are recovered with high yields (≥90%). The molecular weights (MWs) of PBLG can be controlled by the molar ratios of monomer to catalyst, and the MW distributions (MWDs) are relatively narrow (as low as 1.16) depending on the rare earth metals and reaction temperatures. Block copolypeptides can be easily synthesized by the sequential addition of two monomers. The obtained P(γ‐benzyl‐L ‐glutamate‐b‐ε‐carbobenzoxy‐L ‐lysine) [P(BLG‐b‐BLL)] and P(γ‐benzyl‐L ‐glutamate‐b‐alanine) [P(BLG‐b‐ALA)] have been well characterized by NMR, gel permeation chromatography, and differential scanning calorimetry measurements. A random copolymer P(BLG‐co‐BLL) with a narrow MWD of 1.07 has also been synthesized. The polymerization mechanisms have been investigated in detail. The results show that both nucleophilic attack at the 5‐CO of NCA and deprotonation of 3‐NH of NCA in the initiation process take place simultaneously, resulting in two active centers, that is, an yttrium ALA carbamate derivative [H2BOCH2(CH)NHC(O)OLn? ] and a N‐yttriumlated ALA NCA. Propagation then proceeds on these centers via both normal monomer insertion and polycondensation. After termination, two kinds of telechelic polypeptide chains, that is, α‐hydroxyl‐ω‐aminotelechelic chains and α‐carboxylic‐ω‐aminotelechelic ones, are formed as characterized by MALDI‐TOF MS, 1H NMR, 13C NMR, 1H–1H COSY, and 1H–13C HMQC measurements. By decreasing the reaction temperature, the normal monomer insertion pathway can be exclusively selected, forming an unprecedented α‐hydroxyl‐ω‐aminotelechelic polypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号