首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

2.
The unsymmetrical bis (arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐t‐BuC6H2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N‐aryl group bedecked with ortho‐substituted fluorobenzhydryl groups, have been employed in the preparation of the corresponding five‐coordinate cobalt (II) chelates, LCoCl2 ( Co1 – Co5 ); the symmetrical comparator [2,6‐{CMeN(2,6‐(4‐FC6H4)2CH)2–4‐t‐BuC6H2}2C5H3N]CoCl2 (Co6) is also reported. All cobaltous complexes are paramagnetic and have been characterized by 1H/19F NMR spectroscopy, FT‐IR spectroscopy and elemental analysis. The molecular structures of Co3 and Co6 highlight the different degrees of steric protection given to the metal center by the particular N‐aryl group combination. Depending on the aluminoxane co‐catalyst employed to activate the cobalt precatalyst, distinct variations in thermal stability and activity of the catalyst towards ethylene polymerization were exhibited. In particular with MAO, the resultant catalysts reached their optimal performance at 70 °C delivering high activities of up to 10.1 × 106 g PE (mol of Co)?1 h?1 with Co1  >  Co4  >  Co2  >  Co5  >  Co3 >>  Co6 . On the other hand, using MMAO, the catalysts operate most effectively at 30 °C but are by comparison less productive. In general, the polyethylenes were highly linear, narrowly disperse and displayed a wide range of molecular weights [Mw range: 18.5–58.7 kg mol?1 (MAO); 206.1–352.5 kg mol?1 (MMAO)].  相似文献   

3.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

4.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

5.
A series of 2‐(arylimino)benzylidene‐9‐arylimino‐5,6,7,8‐tetrahydrocyclohepta[b] pyridyliron(II) chlorides was synthesized and characterized using FT‐IR and elemental analysis, and the molecular structures of complexes Fe3 and Fe4 have been confirmed by the single‐crystal X‐ray diffraction as a pseudo‐square‐pyramidal or distorted trigonal‐bipyramidal geometry around the iron core. On activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all iron precatalysts exhibited high activities toward ethylene polymerization with a marvelous thermo‐stability and long lifetime. The Fe4 /MAO system showed highest activity of 1.56 × 107 gPE·mol?1(Fe)·h?1 at 70 °C, which is one of the highest activities toward ethylene polymerization by iron precatalysts. Even up to 80 °C, Fe3 /MAO system still persist high activity as 6.87 × 106 g(PE)·mol?1(Fe)·h?1, demonstrating remarkable thermal stability for industrial polymerizations (80–100 °C). This was mainly attributing to the phenyl modification of the framework of the iron precatalysts. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 830–842  相似文献   

6.
Summary: A DFT method has been applied for quantum‐chemical calculations of the molecular structure of charge‐neutral complex LFeMe(μMe)2AlMe2 which is formed in system LFeMe2 + AlMe3 (L = 2,6‐bis(imino)pyridyl). Calculations suggested the formation of highly polarized complex LFeMe(μMe)2AlMe2 ( II ) in system LFeMe2 + AlMe3, characterized by r(Fe μMe) = 3.70 Å and r(Al μMe) = 2.08 Å and deficient electron density on fragment [LFeMe]Q (Q = +0.80 e). Polarization of the complex progresses with the bounding of two AlMe3 molecules (complex LFeMe(μMe)2AlMe2 · 2AlMe3 ( III )) and with replacement of AlMe3 by MeAlCl2 (complex LFeMe(μMe)2AlCl2 ( IV )). The activation energy of ethylene insertion into the Fe Me bond of these complexes has been calculated. It was found that the heat of π‐complex formation increases with increasing of polarization extent in the order II < III < IV . Activation energy of the insertion of coordinated ethylene into Fe Me bond decreases in the same order: II > III > IV .

Calculated model complex (NH3)3FeMe2; tridentate bis(imino)pyridyl ligand was substituted by three coplanar NH3 groups.  相似文献   


7.
8.
Five examples of nickel(II) bromide complexes bearing N,N‐imino‐cyclopenta[b ]pyridines, [7‐(ArN)‐6,6‐Me2C8H5N]NiBr2 (Ar = 2,6‐Me2C6H3 ( Ni1 ), 2,6‐Et2C6H3 ( Ni2 ), 2,6‐i‐ Pr2C6H3 ( Ni3 ), 2,4,6‐Me3C6H2 ( Ni4 ), 2,6‐Et2‐4‐MeC6H2 ( Ni5 )), have been prepared by the reaction of the corresponding ligand, L1 – L5 , with NiBr2(DME) (DME = 1,2‐dimethoxyethane). On crystallization from bench dichloromethane, Ni1 underwent adventitious reaction with water to give the aqua salt, [ L1 NiBr(OH2)3][Br] ( Ni1' ). The molecular structures of Ni1' and Ni3 have been structurally characterized, the latter revealing a bromide‐bridged dimer. On activation with either MMAO or Et2AlCl, Ni1 , Ni2 , Ni4, and Ni5 , all exhibited high activities for ethylene polymerization (up to 3.88 × 106 g(PE) mol?1(Ni) h?1); the most sterically bulky Ni3 gave only low activity. Polyethylene waxes are a feature of the materials obtained which typically display low molecular weights (M ws), narrow M w distributions and unsaturated vinyl and vinylene functionalities. Notably, the catalyst comprising Ni1 /Et2AlCl produced polyethylene with the lowest M w, 0.67 kg mol?1, which is less than any previously reported data for any class of cycloalkyl‐fused pyridine–nickel catalyst. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3494–3505  相似文献   

9.
MOGHIMI Ali 《中国化学》2008,26(10):1831-1836
A novel, simple, sensitive and effective method has been developed for preconcentration of thallium on N,N’-bis(3-methylsalicylidene)-ortho-phenylenediamine (MSOPD) adsorbent in a pH range 5.0—10.0, prior to its spectrophotometric determination, based on the oxidation of bromopyrogallol red at λ=520 nm. This method makes it possible to quantitize thallium in a range of 3.6×10-9 to 2.0×10-5 mol/L, with a detection limit (S/N=3) of 1.42×10-9 mol/L. This procedure has been successfully applied to determine the ultra trace levels of thallium in the environmental samples, free from the interference of some diverse ions. The precision, expressed as relative standard deviation of three measurements, is better than 2.9%.  相似文献   

10.
Kinetics of hexene‐1 polymerization was investigated using [(N,N′‐diisopropylbenzene)2,3‐(1,8‐napthly)‐1,4‐diazabutadiene]dibromonickel/methylaluminoxane catalyst. Experiments were performed at varying catalyst and monomer concentrations in the temperature range of ?10 to 35 °C. First order time‐conversion plot shows a downward curvature at temperatures of 20 °C and 35 °C indicating the presence of finite termination reactions. A nonlinear plot of degree of polymerization (Pn) with respect to conversion indicates occurrence of transfer reactions and slow initiation. The experimental molar masses are higher than predicted, which implies that a fraction of catalyst species could not be activated or is deactivated at the early stages of the reactions. The efficiency of the catalyst (Cateff) varies from 0.77 to 0.89. The observed polydispersity of the poly(hexene‐1) s is in the range of 1.18–1.48. The reaction order was found to be 1.11 with respect to catalyst. The Arrhenius plot obtained using the overall propagation rate constant, kp, at five different temperatures (?10, 0, 10, 20, and 35 °C) was found to be linear with an activation energy, Ea = 4.3 kcal/mol. Based on the results presented it is concluded that the polymerization of hexene‐1 under the above‐mentioned conditions shows significant deviation from ideal “living” behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1093–1100, 2007  相似文献   

11.
A novel bis[benzyl‐N′‐hydrazinecarbodithioato‐κ2 N′,S]nickel(II) complex was synthesized and characterized by means of various physical, chemical, and spectroscopic techniques. The X‐ray single crystal diffraction analysis indicated two independent close comparable bis‐chelated square planar complexes of trans‐configuration, where S‐benzyl dithiocarbazate (SBDTC) ligand is coordinated via N,S‐donor set. The complex is able to inhibit Ehrlich ascites carcinoma (EAC) cell proliferation by 51.81% and 75.75%, with 0.3 and 50 mg kg?1 (dose adjusted) dose, respectively, administered intraperitoneally for five successive days in mice model. Apoptotic cell morphological changes were examined using optical and fluorescence microscopy techniques. Expression pattern of apoptosis regulatory genes in EAC cells treated with the synthesized nickel(II) complex for five consecutive days showed an increased expression of P53, Bax, Cas‐8, Cas‐9, Cas‐3, Cyt‐c, and TNF‐α proapoptotic genes and decreased expression of antiapoptotic Bcl‐2 gene. The Ni(II) complex and Bleomycin (standard drug) were used in molecular docking coupled with molecular dynamics simulation studies with the aim to support the experimental results and to investigate the apoptotic effect towards the targeting apoptotic genes. Both experimental and computational studies reveal that the nickel(II) complex inhibits EAC cells growth successfully, suggesting a potential compound for cancer treatment.  相似文献   

12.
The simple PVC‐based membrane containing N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane (tpmc) as an ionophore and dibutyl phthalate as a plasticizer, directly coated on a glassy carbon electrode was examined as a new sensor for Cu2+ ions. The potential response was linear within the concentration range of 1.0×10?1–1.0×10?6 M with a Nernstian slope of 28.8 mV/decade and detection limit of 7.0×10?7 M. The electrode was used in aqueous solutions over a wide pH range (1.3–6). The sensor exhibited excellent selectivity for Cu2+ ion over a number of cations and was successfully used in its determination in real samples.  相似文献   

13.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

14.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

15.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

16.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

17.
N‐Arylcyano‐β‐diketiminate methallyl nickel complexes activated with B(C6F5)3 were used in the polymerization of ethylene. The microstructure analysis of obtained polyethylene (PE) was done by differential scanning calorimetry and 13C nuclear magnetic resonance (NMR). The branched polymer structures produced by these catalysts were attributed to one step isomerization mechanism of the catalyst along the polymer chain. The ortho or para position of the cyano group with co‐ordinated B(C6F5)3 in both methallyl nickel catalysts influenced the polymer molecular weight, branching, and consequently melting and crystallization temperatures. NMR spectroscopic studies showed predominantly the formation of methyl branches in the obtained PE. Catalysts under study gave linear low‐density PEs with good crystallinities at temperatures of reaction between 50 °C and 70 °C at moderate pressures (12.3 atm). A propylene–ethylene copolymer produced by the metallocene catalyst had the same concentration of branches as the PE synthesized from methallyl nickel/B(C6F5)3. Comparing the two polyolefins with the same degree of branching, it was observed that the polymer obtained with the nickel catalyst proved to be twice more crystalline and had greater Tm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 452–458  相似文献   

18.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

19.
张向东  葛春华  尹晶  赵阳  何翠 《中国化学》2009,27(6):1195-1198
在常规条件下,合成了具有新颖结构的配位聚合物[Mn(bdpbp)2(NO3)2]n (1) [bdpbp =4,4’-二(磷酸二甲酯甲基)联苯]。配合物1由单晶x-射线衍射确定结构,并用元素分析、红外光谱、荧光光谱和热重进行了表征和性质研究。配合物1具有二维无限的网格状结构,形成双重互穿,并由弱的C-H···O氢键进一步连接成三维超分子网络。  相似文献   

20.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号