首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic benzene C?H activation toward selective phenol synthesis with O2 remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three‐steps cumene process in liquid phase, which is energy‐intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas‐phase single‐path reaction process. This account documents the pivotal confined single metal ion site platform with a sufficiently large coordination sphere in β zeolite pores, which promotes the unprecedented catalysis for the selective benzene hydroxylation with O2 under coexisting NH3 by the new inter‐ligand concerted mechanism. Among alkali and alkaline‐earth metal ions and transition and precious metal ions, single Cs+ and Rb+ sites with ion diameters >0.300 nm in the β pores exhibited good performances for the direct phenol synthesis in a gas‐phase single‐path reaction process. The single Cs+ and Rb+ sites that possess neither significant Lewis acidic?basic property nor redox property, cannot activate benzene, O2, and NH3, respectively, whereas when they coadsorbed together, the reaction of the inter‐coadsorbates on the single alkali‐metal ion site proceeds concertedly (the inter‐ligand concerted mechanism), bringing about the benzene C?H activation toward phenol synthesis. The NH3‐driven benzene C?H activation with O2 was compared to the switchover of the reaction pathways from the deep oxidation to selective oxidation of benzene by coexisting NH3 on Pt6 metallic cluster/β and Ni4O4 oxide cluster/β. The NH3‐driven selective oxidation mechanism observed with the Cs+/β and Rb+/β differs from the traditional redox catalysis (Mars‐van Krevelen) mechanism, simple Langmuir‐Hinshelwood mechanism, and acid?base catalysis mechanism involving clearly defined interaction modes. The present catalysis concept opens a new way for catalytic selective oxidation processes involving direct phenol synthesis.  相似文献   

2.
Since 1987, stoichiometric cyclomanganation of ketones and subsequent reactions with olefins in the presence of either palladium salts or trimethylamine N‐oxide (Me3N+O?) have been reported, but the catalytic versions remain untouched so far. Herein, the first manganese‐catalyzed redox‐neutral C?H olefination of ketones with unactivated alkenes is described, and shows a distinct reactivity with its parent stoichimetric reactions. Remarkably, mechanistic experiments and DFT calculations uncovers a unique concerted bis‐metalation deprotonation (CBMD) mechanism of the Mn‐Zn‐enabled C?H bond activation.  相似文献   

3.
Summary The activity of systems made of a platinum metal supported on Fe2O3 in the water-gas shift reaction (WGSR) has been studied. The iron oxide catalysts activity in WGSR are apparently determined by their redox properties that can be improved by addition of platinum metals.  相似文献   

4.
In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal‐organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect‐free HKUST‐1 MOF thin films, we demonstrate that Cu+/Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+/Cu2+ pairs of the intact framework, account for the high catalytic activity in low‐temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+/Cu2+. Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.  相似文献   

5.
Ni-Al layered double hydroxides with Ni2+/Al3+ molar ratios of 1.5 and 3.0 have been synthesized by co-precipitation and studied as catalyst precursors for purification of CO-containing gas-mixtures by means of CO oxidation to CO2 and conversion of CO by water vapor (water-gas shift reaction). The influence of the alkali additives (K+ ions) on the water-gas shift activity has been also examined. It was established that the catalytic activity of both reactions increases with the temperature and the nickel content. Hypothetic schemes are proposed about activation of the catalysts in the WGSR and CO oxidation including redox Ni2+ ? Ni3+ transition on the catalyst surface. The activity in WGSR is positively affected by the presence of potassium promoter, depending on its amount. The sample with higher nickel loading is the most effective catalyst as for CO oxidation as well as for WGSR at intermediate temperatures after potassium promotion.  相似文献   

6.
《Electroanalysis》2017,29(5):1469-1473
The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalysts with enhanced activity to improve the battery performance. Herein, we synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen‐doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivity, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as‐prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.  相似文献   

7.
Neutron diffraction analysis studies reported an isolated hydronium ion (H3O+) in the interior of d ‐xylose isomerase (XI) and phycocyanobilin‐ferredoxin oxidoreductase (PcyA). H3O+ forms hydrogen bonds (H‐bonds) with two histidine side‐chains and a backbone carbonyl group in PcyA, whereas H3O+ forms H‐bonds with three acidic residues in XI. Using a quantum mechanical/molecular mechanical (QM/MM) approach, we analyzed stabilization of H3O+ by the protein environment. QM/MM calculations indicated that H3O+ was unstable in the PcyA crystal structure, releasing a proton to an H‐bond partner His88, producing H2O and protonated His88. On the other hand, H3O+ was stable in the XI crystal structure. H‐bond partners of isolated H3O+ would be practically limited to acidic residues such as aspartic and glutamic acids in the protein environment.  相似文献   

8.
In order to investigate the gas‐phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6‐31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C6H8O6]H+, were generated by electrospray ionization of a 10?3 M H2O/CH3OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C6H8O6]H+ ionic reactants, we estimated the proton affinity and the gas‐phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6‐31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol?1 and protonation entropy ΔSp 108.9 ± 2 J mol?1 K?1, a gas‐phase basicity value of AA of 842.5 ± 12 kJ mol?1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Efficient and reusable nanocatalysts fabricated via a facile assembly are highly desirable for the cost‐effective hydrogenation reduction. Inspired by a fishing process with a fishnet, multifunctional nanostructured catalysts are rationally designed to combine interesting features via the self‐redox assembly of Fe3O4‐Ag composites on reduced graphene oxide (rGO) (Fe3O4‐Ag/rGO). In detail, Fe3O4 nanoparticles (NPs) endow the ternary hybrids with superparamagnetism (21.42 emu g?1), facilitating catalysts to be separated from the reaction system. rGO could provide electron transfer pathways, enhancing catalytic activity. More interestingly, GO and Ag+ could behave as oxidants to oxidize Fe2+ for the in situ assembly of Fe3O4‐Ag/rGO without any addition of reductant/oxidant or organic solvents, and AgNPs endow the ternary hybrids with excellent catalytic behaviour. Meaningfully, the bioinspired process enables the ternary hybrids to possess more abundant micro?/nanopores, larger surface area, and more amorphization. They exhibit exceptional catalytic performance, and could be recycled with excellent activity by means of convenient magnetic separation (at least 7 times). Moreover, the ternary hybrids could degrade methylene blue under UV light due to different valence states of Fe in Fe3O4. Therefore, the proposed bioinspired assembly and structure design for hierarchical catalysts would pave a promising way to assemble other catalysts.  相似文献   

10.
The photoinitiated cationic polymerization of cyclohexene oxide with N‐phenacyl‐N,N‐dimethylanilinium hexafluoroantimonate (PDA+SbF6) and a polynuclear aromatic compound, such as perylene, anthracene or phenothiazine, or an aromatic carbonyl compound, such as benzophenone or thioxanthone, was studied at λinc > 340 nm. All the aromatic sensitizers except benzophenone and thioxanthone are effective in initiating the polymerization at wavelengths where PDA+SbF6 is transparent. An initiation mechanism is proposed that involves electron transfer from the excited sensitizer to PDA+SbF6.  相似文献   

11.
Supported ionic liquid phase (SILP) catalysis enables a highly efficient, Ru‐based, homogeneously catalyzed water‐gas shift reaction (WGSR) between 100 °C and 150 °C. The active Ru‐complexes have been found to exist in imidazolium chloride melts under operating conditions in a dynamic equilibrium, which is dominated by the [Ru(CO)3Cl3]? complex. Herein we present state‐of‐the‐art theoretical calculations to elucidate the reaction mechanism in more detail. We show that the mechanism includes the intermediate formation and degradation of hydrogen chloride, which effectively reduces the high barrier for the formation of the requisite dihydrogen complex. The hypothesis that the rate‐limiting step involves water is supported by using D2O in continuous catalytic WGSR experiments. The resulting mechanism constitutes a highly competitive alternative to earlier reported generic routes involving nucleophilic addition of hydroxide in the gas phase and in solution.  相似文献   

12.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

13.
Valinomycin is a naturally occurring cyclic dodecadepsipeptide with the formula cyclo‐[d ‐HiVA→l ‐Val →l ‐LA→l ‐Val]3 (d ‐HiVA is d ‐α‐hydroxyisovaleic acid, Val is valine and LA is lactic acid), which binds a K+ ion with high selectively. In the past, several cation‐binding modes have been revealed by X‐ray crystallography. In the K+, Rb+ and Cs+ complexes, the ester O atoms coordinate the cation with a trigonal antiprismatic geometry, while the six amide groups form intramolecular hydrogen bonds and the network that is formed has a bracelet‐like conformation (Type 1 binding). Type 2 binding is seen with the Na+ cation, in which the valinomycin molecule retains the bracelet conformation but the cations are coordinated by only three ester carbonyl groups and are not centrally located. In addition, a picrate counter‐ion and a water molecule is found at the center of the valinomycin bracelet. Type 3 binding is observed with divalent Ba2+, in which two cations are incorporated, bridged by two anions, and coordinated by amide carbonyl groups, and there are no intramolecular amide hydrogen bonds. In this paper, we present a new Type 4 cation‐binding mode, observed in valinomycin hexaaquamagnesium bis(trifluoromethanesulfonate) trihydrate, C54H90N6O18·[Mg(H2O)6](CF3SO3)2·3H2O, in which the valinomycin molecule incorporates a whole hexaaquamagnesium ion, [Mg(H2O)6]2+, via hydrogen bonding between the amide carbonyl groups and the hydrate water H atoms. In this complex, valinomycin retains the threefold symmetry observed in Type 1 binding, but the amide hydrogen‐bond network is lost; the hexaaquamagnesium cation is hydrogen bonded by six amide carbonyl groups. 1H NMR titration data is consistent with the 1:1 binding stoichiometry in acetonitrile solution. This new cation‐binding mode of binding a whole hexaaquamagnesium ion by a cyclic polypeptide is likely to have important implications for the study of metal binding with biological models under physiological conditions.  相似文献   

14.
O1s core‐electron binding energies (CEBE) of the atomic oxygens on different Ag surfaces were investigated by the symmetry adapted cluster‐configuration interaction (SAC‐CI) method combined with the dipped adcluster model, in which the electron exchange between bulk metal and adsorbate is taken into account properly. Electrophilic and nucleophilic oxygens (Oelec and Onuc) that might be important for olefin epoxidation in a low‐oxygen coverage condition were focused here. We consider the O1s CEBE as a key property to distinguish the surface oxygen states, and series of calculation was carried out by the Hartree–Fock, Density functional theory, and SAC/SAC‐CI methods. The experimental information and our SAC/SAC‐CI results indicate that Oelec is the atomic oxygen adsorbed on the fcc site of Ag(111) and that Onuc is the one on the reconstructed added‐row site of Ag(110) and that one‐ and two‐electron transfers occur, respectively, to the Oelec and Onuc adclusters from the silver surface. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Meyer–Schuster rearrangements of 2‐phenyl‐3‐butyn‐2‐ol with H3O+ and (H2O)6 model in high‐temperature water (HTW) have been investigated by the use of density functional theory calculations. In the substrate 2‐phenyl‐3‐butyn‐2‐ol catalyzed by H3O+ and (H2O)6, the Meyer–Schuster rearrangements were predicted by the frontier molecular orbital theory. The results show that the rearrangement does not involve the carbonium ion intermediates, but the first transition state is carboniumion like. Dehydration and hydration may occur via the intermolecular proton relay along the hydrogen‐bond chains and the second step of reaction path is a total acid–base catalytic process. Based on the results, a model considered both HTW ambient and water molecules are proposed to represent mechanisms of other reactions in HTW. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Nanocrystalline tin‐oxide particles were prepared as electrodes on the bases of ITO glass and AT‐cut quartz crystals (sputtered gold), respectively, and characterized for their electrochemical behavior. Experiments suggested that the SnO2 particles could induce an energy barrier to the redox reactions taking place on the electrode surface. When the amount of SnO2 exceeded ca. 10?7 mol cm?2, electrochemical activity demonstrated by the solution redox couples was entirely suppressed. Nevertheless, electrochemical impedance spectroscopic (EIS) measurements suggested that mutual communication between redox couples would still take place on the surface of SnO2. For instance, although the CV curves of Fe(CN)63‐/4‐ were completely blocked, the exchange current of Fe(CN)63‐/4‐ could still flow through the tin‐oxide modified electrode, increasing with its concentration up to 40 mM. The propagation of electrons in the SnO2 film was likely via a hopping mechanism. Electrochemical quartz microbalance (EQCM) measurements, in addition, suggested that a charge‐compensating cation (K+ or H+) uptake reaction may be induced as electrons were pumped to the Sn02 electrode, while, if electrons were removed, that could cause water desorption. Analysis based on the Frumkin adsorption isotherm showed the driving force behind the adsorption of water on SnO2 is about ?2 kcal/mol. Nonetheless, the adsorbed water might face a competitive repulsion from acetonitrile when acetonitrile was used as the electrolyte medium.  相似文献   

17.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.  相似文献   

18.
The catalytic activity of ruthenium(IV) ([Ru(η33‐C10H16)Cl2L]; C10H16=2,7‐dimethylocta‐2,6‐diene‐1,8‐diyl, L=pyrazole, 3‐methylpyrazole, 3,5‐dimethylpyrazole, 3‐methyl‐5‐phenylpyrazole, 2‐(1H‐pyrazol‐3‐yl)phenol or indazole) and ruthenium(II) complexes ([Ru(η6‐arene)Cl2(3,5‐dimethylpyrazole)]; arene=C6H6, p‐cymene or C6Me6) in the redox isomerisation of allylic alcohols into carbonyl compounds in water is reported. The former show much higher catalytic activity than ruthenium(II) complexes. In particular, a variety of allylic alcohols have been quantitatively isomerised by using [Ru(η33‐C10H16)Cl2(pyrazole)] as a catalyst; the reactions proceeded faster in water than in THF, and in the absence of base. The isomerisations of monosubstituted alcohols take place rapidly (10–60 min, turn‐over frequency=750–3000 h?1) and, in some cases, at 35 °C in 60 min. The nature of the aqueous species formed in water by this complex has been analysed by ESI‐MS. To analyse how an aqueous medium can influence the mechanism of the bifunctional catalytic process, DFT calculations (B3LYP) including one or two explicit water molecules and using the polarisable continuum model have been carried out and provide a valuable insight into the role of water on the activity of the bifunctional catalyst. Several mechanisms have been considered and imply the formation of aqua complexes and their deprotonated species generated from [Ru(η33‐C10H16)Cl2(pyrazole)]. Different competitive pathways based on outer‐sphere mechanisms, which imply hydrogen‐transfer processes, have been analysed. The overall isomerisation implies two hydrogen‐transfer steps from the substrate to the catalyst and subsequent transfer back to the substrate. In addition to the conventional Noyori outer‐sphere mechanism, which involves the pyrazolide ligand, a new mechanism with a hydroxopyrazole complex as the active species can be at work in water. The possibility of formation of an enol, which isomerises easily to the keto form in water, also contributes to the efficiency in water.  相似文献   

19.
The review discusses the experimental data on the unusual mechanism of the reduction of copper cations from the copper chromite, CuCr2O4, structure. Treatment of copper chromite in hydrogen at 180–370°C is not accompanied by water formation but leads to absorption of hydrogen by the oxide structure with simultaneous formation of metallic copper as small flat particles which are epitaxially bound to the oxide. This process is due to the redox reaction Cu2+ + H2 → Cu0 + 2H+; the protons are stabilized in the oxide phase, which is confirmed by neutron diffraction studies. The reduced copper chromite which contains absorbed hydrogen in its oxidized state and the metallic copper particles epitaxially bound to the oxide phase structure exhibit catalytic activity in hydrogenation reactions.  相似文献   

20.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号