首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

2.
A monometallic (Cu2+, 1) and a bimetallic (Cu2+ Nd3+, 2) Salen‐type Schiff‐base complexes with different reactive species, could efficiently catalyze the bulk solvent‐free melt ring‐opening polymerization (ROP) of L ‐lactide. Especially for the bimetallic complex 2, the involvement of rare earth ion was important and influential to the catalytic behaviors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The title compound, [Cu2(C13H14N3)2Cl2], is a neutral dimeric copper(II) complex. The two CuII atoms are asymmetrically bridged by two chloride ions. Each CuII atom is also bound to the three N atoms of a deprotonated tridentate Schiff base ligand, giving a distorted square‐pyramidal N3Cl2 coordination environment overall. The dinuclear complex lies across an inversion centre in the space group P. This work demonstrates the effect of ligand flexibility and steric constraints on the structures of copper(II) complexes.  相似文献   

4.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

5.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

6.
Two bidentate Schiff base ligands (HL1 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)phenol]‐1,8‐naphthalimide; and HL2 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)‐6‐methoxyphenol]‐1,8‐naphthalimide) with their metal complexes [Cu(L1)2] ( 1 ), [Zn(L1)2(Py)]2?H2O ( 2 ) and [Ni(L2)2(DMF)2] ( 3 ) have been synthesized and characterized. Single‐crystal X‐ray structure analysis reveals that complex 1 has a four‐coordinated square geometry, while complex 2 is a five‐coordinated square pyramidal structure and complex 3 is a distorted six‐coordinated octahedral structure. Cyclic voltammograms of 1 indicate an irreversible Cu2+/Cu+ couple. In vitro antioxidant activity assay demonstrates that the ligands and the two complexes 1 and 3 display high scavenging activity against hydroxyl (HO?) and superoxide (O2??) radicals. Moreover, the fluorescence properties of the ligands and complexes 1 – 3 were studied in the solid state. Metal‐mediated enhancement is observed in 2 , whereas metal‐mediated fluorescence quenching occurs with 1 and 3 .  相似文献   

7.
Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}(thiocyanato‐κN)(triphenylphosphane‐κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and 1H NMR spectroscopy, and X‐ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the CuI atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS ligand is coordinated through its N atom. The geometry around the CuI atom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.  相似文献   

8.
The title racemic complex, bis[μ‐N‐(2‐oxidobenzylidene)‐d ,l ‐glutamato(2−)]bis[(isoquinoline)copper(II)] ethanol disolvate, [Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O, adopts a square‐pyramidal CuII coordination mode with a tridentate N‐salicylideneglutamato Schiff base dianion and an isoquinoline ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the adjacent chelate molecule at an apical distance of 2.487 (3) Å, building a dimer located on the crystallographic inversion center. The Cu...Cu spacing within the dimers is 3.3264 (12) Å. The ethanol solvent molecules are hydrogen bonded to the dimeric complex molecules, forming infinite chains in the a direction. The biological activity of the title complex has been studied.  相似文献   

9.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A new bi‐nucleating Schiff base ligand, 2‐(((3‐(dimethylamino)propyl)imino)methyl)‐6‐methoxyphenol (HL1) was prepared by a one‐pot condensation reaction, which was further used in the construction of three trinuclear Schiff base transition metal(II) complexes [Cu3(L1)2(OH)2(H2O)2](NO3)2 ( 1 ), [Co3(L1)2(OH)2(H2O)2](NO3)2 ( 2 ), and [Cu3(L1)2(N3)4] ( 3 ). Furthermore, a green hand grinding technique was implemented to reduce the particle size of the coordination complexes to generate the nanoscale compounds. The SEM studies reveal the formation of square and spherical particles for nano 1 and 2 , and nanorod for nano 3 . In addition, the anti‐proliferation activity of nano 1 – 3 was detected on the human cervical cancer Hela cells with CCK‐8 assay. The cell viability curves and IC50 values indicated that only nano 1 has anti‐proliferation activity on Hela cells. To further investigate the mechanism of nano 1 induced Hela cell death, the Annexin V‐FITC/PI double staining assay, western blot assay, and ROS level detection was conducted.  相似文献   

11.
Four Schiff base complexes, [Cu2(L1)2(μ‐NCS)2] ( 1 ), [Cu2(L2)2(μ‐N3)2] ( 2 ), Cu[Cu(CH3COO)(L3)]2 ( 3 ), and [Zn{Zn(C3H4N2)(L3)}2(NO3)](NO3) ( 4 ) (where L1 = 2‐[(pyridin‐2‐ylmethylimino)methyl]phenol, L2 = 1‐[(pyridin‐2‐ylmethylimino)methyl]naphthalen‐2‐ol, and L3 = bis(salicylidene)‐1, 3‐propanediamine), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar di‐nuclear complexes, which are located at crystallographic inversion centers (with the center of the central Cu2N2 ring). In 1 , each copper atom has a slightly distorted square pyramidal configuration, coordinated by two nitrogen atoms and one oxygen atom from L1 and another two terminal nitrogen atoms from two bridging thiocyanate anions. The Cu···Cu separation is 3.466(3) Å. The structure of 2 is similar to that of 1 , with Cu···Cu separation of 3.368(2) Å. Both 3 and 4 are linear tri‐nuclear complexes. In 3 , the central Cu2+ ion is located on an inversion centre and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands (L3) in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Cu2+ ions is irregular‐square pyramidal, with two O and two N atoms of L3 in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Cu2+ ions are mutually trans. The Cu···Cu separation is 3.009(3) Å. In 4 , the coordination configuration of the central and the terminal zinc atoms are similar to that of the 3 , with Zn···Zn separation of 3.153(4) Å. The three Schiff bases and the corresponding three copper complexes exhibit good antibacterial properties, while the zinc complex 4 has nearly no.  相似文献   

12.
New amphiphilic gelators that contained both Schiff base and L ‐glutamide moieties, abbreviated as o‐SLG and p‐SLG, were synthesized and their self‐assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o‐SLG formed a thermotropic gel in many organic solvents, whilst p‐SLG did not. When metal ions, such as Cu2+, Zn2+, Mg2+, Ni2+, were added, different behaviors were observed. The addition of Cu2+ induced p‐SLG to from an organogel. In the case of o‐SLG, the addition of Cu2+ and Mg2+ ions maintained the gelating ability of the compound, whilst Zn2+ and Ni2+ ions destroyed the gel. In addition, the introduction of Cu2+ ions caused the nanofiber gel to perform a chiral twist, whilst the Mg2+ ions enhanced the fluorescence of the gel. More interestingly, the Mg2+‐ion‐mediated organogel showed differences in the fluorescence quenching by D ‐ and L ‐tartaric acid, thus showing a chiral recognition ability.  相似文献   

13.
The copper(II) complex [Cu2L21,3‐NCS)2]n · nMeOH [HL = 2‐(5‐chloro‐2‐hydroxybenzylideneamino)‐2‐ethylpropane‐1,3‐diol] was synthesized and characterized by elemental analysis, as well as FT‐IR, and UV/Vis spectroscopy. The structures of the ligand and the complex were confirmed by single‐crystal X‐ray diffraction analyses. The Schiff base ligand coordinates to the copper atoms through the phenolate oxygen and imino nitrogen atoms, and one hydroxyl oxygen atom. The copper atoms are in octahedral coordination. The complex is an active catalyst for the oxidation of cyclooctene and styrene with tert‐butylhydroperoxide as the oxidant under mild conditions.  相似文献   

14.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

15.
A new series of metal complexes containing Co(II), Pd(II), Fe(III) chloride and Cu(II) salts (chloride, bromide, sulphate and perchlorate) have been prepared with Schiff base ligand ( HL ). The synthesized compounds were elucidated using elemental analyses, spectral techniques, molar conductance, magnetic measurements and thermogravimetric studies. The analytical data established (1 M:1 L) stoichiometry for complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) and ( 7 ) as well as (1 M:2 L) and (2 M:3 L) stoichiometry for complexes ( 5 ) and ( 3 ), respectively. As a result, the ligand HL coordinates in complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) as a monobasic tridentate ONN moiety via the oxygen atom of the deprotonated phenolic OH, the nitrogen atoms of the azomethine and the imine group in pyrazolopyridine ring. While, it behaves as a neutral bidentate in complexes ( 3 , 7 ), chelates via oxygen and nitrogen atoms of enolic OH and azomethine groups. Also, in complex ( 5 ) Cu2+ ion binds via NO sits of two ligand molecules in its monobasic and neutral forms. The magnetic moment and electronic spectral data proposed octahedral structure for complexes ( 2 , 3 and 7 ) as well as triagonal bipyramidal and square pyramidal geometry for complexes ( 1 and 4 ), while, chelates ( 5 ) and ( 6 ) possess square planar geometry. TG/DTG studies confirmed the chemical formula for these complexes and established the thermal decomposition processes ended with the formation of metal or metal oxides contaminated with carbon residue. An axial electron spin resonance spectra were suggested for Cu(II) complexes pointing to 2B1g as a ground state with hyperfine structure for complex ( 4 ). In vitro antibacterial and antioxidant activities were performed for HL ligand and its metal complexes. The biological studies indicate that complex ( 3 ) has better antibacterial activity compared to the ligand and the other complexes.  相似文献   

16.
Crystals of the title compound, [Cu2(C10H9NO3)2(H2O)2]·2CH4N2O, consist of two (N‐salicyl­idene‐β‐alaninato‐κ3O,N,O′)copper(II) coordination units bridged by two water moieties to form a dimer residing on a crystallographic inversion center, along with two uncoordinated urea mol­ecules. The CuII atom has square‐pyramidal coordination, with three donor atoms of the tridentate Schiff base and an O atom of the bridging aqua ligand in the basal plane. The axial position is occupied by the second bridging water ligand at a distance of 2.5941 (18) Å. Hydro­gen bonds between mol­ecules of urea and the neighboring dimer units lead to the formation of a two‐dimensional grid of mol­ecules parallel to [101]. The superposition of the normals of the pyramidal base planes in the direction [100] indicates possible π–π interactions between the neighboring units.  相似文献   

17.
A new series of antibacterial and antifungal amino acid derived Schiff bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR and electronic spectral measurements. The spectral data indicated the Schiff base ligands ( L 1– L 5) derived by condensation of salicylaldehyde with glycine, alanine, phenylalanine, methionine and cysteine, to act as tridentate towards divalent metal ions (cobalt, copper, nickel and zinc) via the azomethine‐N, deprotonated carboxyl group of the respective amino acid and deprotonated oxygen atom of salicylaldehyde by a stoichiometric reaction of M: L (1:2) to form complexes of the type K2[M( L )2] [where M = Co(II), Cu(II), Ni(II) and Zn(II)]. The magnetic moments and electronic spectral data suggested that all complexes have an octahedral geometry. Elemental analyses and NMR spectral data of the ligands and their Zn (II) complexes agree with their proposed structures. The synthesized ligands, along with their metal complexes, were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram ‐ positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared with the uncomplexed Schiff base ligands. The brine shrimp bioassay was also carried out to study their in‐vitro cytotoxic properties. Only three compounds ( 2, 11 and 17 ) displayed potent cytotoxic activity as LD50 = 8.196 × 10?4, 7.315 × 10?4 and 5.599 × 10?4 M /ml respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The title complex, [Cu(C13H9Cl2N2O)(NCS)]n, is a novel thio­cyanate‐bridged polynuclear copper(II) compound. The CuII atom is five‐coordinated in a square‐pyramidal configuration, with one O and two N atoms of one Schiff base ligand and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the axial position. The [2,4‐dichloro‐6‐(pyridin‐2‐ylmethyl­imino­methyl)­phenolato]­copper(II) moieties are linked by the bridging thio­cyanate ligands, forming polymeric chains running along the a axis.  相似文献   

19.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

20.
Copper(II)–Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric CuII complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3‐{[(3‐hydroxypropyl)imino]methyl}‐4‐nitrophenol (H2L ) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single‐crystal X‐ray diffraction analysis and a photoluminescence study. The CuII atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O—H…O hydrogen bonds link the molecules to form a one‐dimensional chain structure and π–π contacts also connect the molecules to form a three‐dimensional structure. The solid‐state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号