首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙驰贺  刘柳辰  文振中  崔国民 《应用化学》2014,31(11):1323-1329
以桦木为模板制备了一系列La2O3/Zr O2固体碱催化剂。采用BET、XRD、XPS和SEM等技术手段对其进行了表征。结果表明,与浸渍法和共沉淀法制备的样品相比,所制得的复合氧化物具备桦木的生物形态,具有更高的比表面积、更小的晶粒尺寸、更大的孔径和孔容等特点。当La/Zr质量比为10%时,样品的碱性最高,催化性能最好。以所制复合氧化物为催化剂,考察小桐子油和甲醇的催化酯交换反应。结果表明,在醇油摩尔比72∶1,固体碱催化剂质量分数8%,反应温度200℃,反应时间6 h的条件下,酯交换反应的甲酯转化率达93.6%。该样品具有一定的抗酸和抗水性。相同反应条件下,样品循环使用3次生物柴油收率仍为83%左右。  相似文献   

2.
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst.  相似文献   

3.
The treatment of α‐bromoalkyl aryl ketones and 2‐(propan‐2‐ylidene)hydrazine carbothioamide afforded 4‐aryl‐2‐(2‐(propan‐2‐ylidene)hydrazinyl)thiazoles via a Hantzsch‐thiazole synthesis, which reacted with 4‐aryl‐2,4‐diketoesters via a sequential Knorr‐pyrazole reaction to deliver a variety of aryl‐substituted ethyl 1‐(thiazol‐2‐yl)‐1H‐pyrazole‐3‐carboxylates in a one‐pot fashion with moderate to high yields. The key intermediates 4‐aryl‐2,4‐diketoesters, existing as its enolic lithium salt, were synthesized in situ by a high‐yield tert‐BuOLi‐mediated Claisen condensation of alkylphenones and diethyl oxalate. This class of elegant molecule comprises aryl groups on the two different heterocyclic cores, and the configurations of two representative molecules were determined by single crystal X‐ray crystallography.  相似文献   

4.
The nanocrystalline cubic Phase of zirconia was found to be thermally stabilized by the addition of 2.56 to 17.65 mol % Y2O3 (5.0 to 30.0 mol % Y, 95.0 to 70.0 mol % Zr cation content). The cubic phase of yttria stabilized zirconia was prepared by thermal decomposition of the hydroxides at 400°C for 1 hr. 2.56 mol % Y2O3‐ZrO2 was stable up to 800°C in an argon atmosphere. The samples with 4.17 to 17.65 mol % Y2O3 were stable to 1200°C and higher. All samples at temperatures between 1450°C to 1700°C were cubic except the sample with 2.56 mol % Y2O3 which was tetragonal. The crystallite sizes observed for the cubic phase ranged from 50 to 150 Å at temperatures below 900°C and varied from 600 to 800 nm between 1450°C and 1700°C. Control of furnace atmosphere is the main factor for obtaining the cubic phase of Y‐SZ at higher temperature. Nanocrystalline cubic Fe‐SZ (Iron Stabilized Zirconia) with crystallite sizes from 70 to 137 Å was also prepared at 400°C. It transformed isothermally at temperatures above 800°C to the tetragonal Fe‐SZ and ultimately to the monoclinic phase at 900°C. The addition of up to 30 mol % Fe(III) thermally stabilized the cubic phase above 800°C in argon. Higher mol % resulted in a separation of Fe2O3. The nanocrystalline cubic Fe‐SZ containing a minimum 20 mol % Fe (III) was found to have the greatest thermal stability. The particle size was a primary factor in determining cubic or tetragonal formation. The oxidation state of Fe in zirconia remained Fe3+. Fe‐SZ lattice parameters and rate of particle growth were observed to decrease with higher iron content. The thermal stability of Fe‐SZ is comparable with that of Ca‐SZ, Mg‐SZ and Mn‐SZ prepared by this method.  相似文献   

5.
In this research a novel and efficient procedure for the preparation of phosphonate derivatives using the reaction of 2,4-dihydroxyacetophenone, isopropenylacetylene, 2-amino-N-alkyl benzamide, dialkyl acetylenedicarboxylates and trimethyl phosphite or triphenyl phosphite in the presence of reusable 2D ZnO/Fe3O4 nanocomposites in water at room temperature was investigated. The 2D ZnO/Fe3O4 nanocomposites were synthesized using ionic liquid [OMIM]Br as a stabilizer and soft template. In addition, the power of antioxidant for some prepared compounds was studied using trapping of radicals by DPPH and a ferric reduction activity potential experiment. As a result, compound 6f displayed a noteworthy power for trapping of free radicals and 6b exhibited excellent reducing power compared with standards (BHT and TBHQ). Moreover, the antimicrobial power of some prepared quinazolinone phosphonates was proved by employing the disk diffusion experiment on two kinds of bacteria, Gram-positive and -negative bacteria. The obtained outcomes of disk diffusion test showed that these compounds prevented bacterial growth. Some advantages of this procedure are: short time of reaction, high yields of product and easy separation of catalyst and products.  相似文献   

6.
A microwave‐assisted multicomponent reaction was used to prepare a series of β‐hydroxy‐1,2,3‐triazoles in the presence of copper@PMO nanocomposites as a catalyst. Box–Behnken design and response surface methodology were used to optimize the influencing parameters such as catalyst content, reaction time and microwave power, being an economical way of obtaining the optimal reaction conditions based on restricted number of experiments. Aqueous reaction medium, easy recovery of catalyst, efficient recycling and high stability of the catalyst render the protocol sustainable and economic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A chemoselective route for the synthesis of chromeno[2,3‐c]pyrazole‐2(3H)‐carbothioamide derivatives by a five‐component reaction of salicylaldehyde, malononitrile, NH2NH2?H2O, aryl isothiocyanate, and H2O in EtOH/AcOH mixture is reported. This new protocol has the advantages of high yields, short reaction times, ease of operation, and simple purification. All structures were confirmed by IR, 1H‐ and 13C‐NMR, and MS analyses. A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

8.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

9.
Sulfur‐resistant methanation of syngas was studied over MoO3–ZrO2 catalysts at 400°C. The MoO3–ZrO2 solid‐solution catalysts were prepared using the solution combustion method by varying MoO3 content and temperature. The 15MoO3–ZrO2 catalyst achieved the highest methanation performance with CO conversion up to 80% at 400°C. The structure of ZrO2 and dispersed MoO3 species was characterized using X‐ray diffraction and transmission electron microscopy. The energy‐dispersive spectrum of the 15MoO3–ZrO2 catalyst showed that the solution combustion method gave well‐dispersed MoO3 particles on the surface of ZrO2. The structure of the catalysts depends on the Mo surface density. It was observed that in the 15MoO3–ZrO2 catalyst the Mo surface density of 4.2 Mo atoms nm?2 approaches the theoretical monolayer capacity of 5 Mo atoms nm?2. The addition of a small amount of MoO3 to ZrO2 led to higher tetragonal content of ZrO2 along with a reduction of particle size. This leads to an efficient catalyst for the low‐temperature CO methanation process.  相似文献   

10.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

11.
Nano n‐propylsulfonated γ‐Al2O3 is easily prepared by the reaction of nano γ‐Al2O3 with 1,3‐propanesultone. This reagent can be used as an efficient catalyst for the synthesis of spiro [indoline‐3,4‐pyrazolo[3,4‐e][1,4]thiazepine]diones in aqueous media. This new method consistently has the advantages of excellent yields and short reaction times. Further, the catalyst can be reused and recovered several times. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Octakis[3‐(3‐aminopropyltriethoxysilane)propyl]octasilsesquioxane (APTPOSS) as a polyhedral oligomeric silsesquioxane derivative was prepared and used as a pioneer reagent to obtain a novel core–shell composite using magnetic iron oxide nanoparticles as the core and the inorganic–organic hybrid polyhedral oligomeric silsesquioxane as the shell. Fe3O4@SiO2/APTPOSS were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, dynamic light scattering, thermogravimetric analysis, X‐ray diffraction and vibrating sample magnetometry. The inorganic–organic hybrid polyhedral oligomeric silsesquioxane magnetic nanoparticles were used as an efficient new heterogeneous catalyst for the one‐pot three‐component synthesis of 1,3‐thiazolidin‐4‐ones under solvent‐free conditions. Moreover, these nanoparticles could be easily separated using an external magnet and then reused several times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
磺氨酸作为一种绿色催化剂可有效催化β-烯胺酮的合成. 该方法具有产率高、反应时间短、条件温和、操作简单等优点,同时催化剂可循环使用。  相似文献   

14.
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway.  相似文献   

15.
Carbon, silicon, germanium, tin and lead‐centered radicals were reacted with 3‐nitropentan‐2‐one and 3‐nitropentan‐2‐ol inside the cavity of an electron paramagnetic resonance spectrometer. In all cases, selective addition to the nitrogroup was observed with detection of the corresponding oxynitroxide radicals. In the case of the carbonyl substrate, alkyl acyl nitroxides were also detected because of α‐photocleavage. The oxynitroxides decayed with a first order kinetics via fragmentation of the carbon–nitrogen bond (denitration). Unexpectedly, the activation parameters were fairly similar to those previously reported for the corresponding tert‐butyl oxynitroxides and almost independent from the presence of a carbonyl or a hydroxyl group on the carbon adjacent to the one bearing the nitrogroup. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This study aims to develop highly efficient, recyclable solid catalysts for the epoxidation of vegetable oils. An Al2O3–ZrO2–TiO2 solid acid catalyst was prepared by a co‐precipitation/impregnation method and characterised through scanning electron microscopy, energy‐dispersive spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared and nitrogen adsorption–desorption analyses. The solid acid catalyst with a high surface area and typical slit pore adsorption was successfully synthesised. Al2O3–ZrO2–TiO2 also exhibits high stability and improved catalytic efficiency in the epoxidation of soybean oil. An oil conversion rate of 86.6%, which is higher than that of conventional catalysts, was obtained with a catalyst loading of 0.8 wt% and was maintained at 76.6% even after recycling the catalyst three times. The performance of the solid catalyst was slightly superior to that of H2SO4. Therefore, this novel catalyst may potentially be applicable in catalysing soybean oil epoxidation.  相似文献   

17.
A palladium‐catalyzed intramolecular α‐arylation of an amide in the presence of a bulky chiral N‐heterocyclic carbene ligand is the key step in the first catalytic synthesis of (3R)‐6‐chloro‐3‐(3‐chlorobenzyl)‐1,3‐dihydro‐3‐(3‐methoxyphenyl)‐2H‐indol‐2‐one ((R)‐ 5 ). This oxindole, in racemic form, had been shown previously to be an anticancer agent. (R)‐ 5 was obtained with an overall yield of 45% and with 96% enantioselectivity.  相似文献   

18.
In the current study, a novel and reusable biological urea based nano magnetic catalyst namely Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was designed and synthesized. The structure of the titled catalyst was fully characterized using several skills including Fourier transform infrared (FT‐IR) spectroscopy, energy dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis/differential thermal analysis (TG/DTG) and vibrating sample magnetometer (VSM). Then, the catalytic performance of Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was successfully inspected towards the multicomponent synthesis of 2‐amino‐3‐cyano pyridine derivatives through a vinylogous anomeric based oxidation pathway.  相似文献   

19.
CoMo/ZrO2-Al2O3催化剂的制备及其加氢脱氧性能   总被引:1,自引:0,他引:1  
以ZrOCl2·6H2O和Al2(SO4)3为原料,采用超声波共沉淀法制得一系列不同ZrO2质量分数的ZrO2- Al2O3复合氧化物载体;并以该复合氧化物为载体,采用等体积浸渍法制得Co和Mo质量分数分别为6.0%和16.0%的CoMo/ZrO2-Al2O3催化剂。BET、XRD、H2-TPR和NH3-TPD等表征结果表明,ZrO2-Al2O3复合氧化物载体具有较高的比表面积与较大的孔容、孔径,随着复合载体中ZrO2质量分数的增加,复合载体比表面积逐渐减小。ZrO2-Al2O3复合载体能高度分散活性组分,钴钼负载量接近其在载体上的单层分散阈值。相比于CoMo/Al2O3,CoMo/ZrO2-Al2O3催化剂具有较高的还原性能和较多的表面酸性活性中心,由此导致其在苯酚加氢脱氧(HDO)反应中,具有较高的加氢脱氧活性和苯选择性。
  相似文献   

20.
KCC‐1/IL/Pd NPs can used as an excellent support for the synthesis of highly sparse homogeneous catalyst. KCC‐1 has high surface area that was functionalized with ionic liquid phase acting as the strong performers so that the Pd catalyst was well‐dispersed without aggregation on the framework of the KCC‐1/IL. This nano catalyst was specified by TGA, XRD, TEM, SEM, FT‐IR, and ICP. For reduction of 2‐nitroaniline and 4‐nitrophenol used from the KCC‐1/IL/Pd NPs as a green catalyst that showed excellent catalytic activities. Compared with the traditional substrate, KCC‐1 substantially increases protection and the accessibility of the nanoparticle sites due to its three dimensional hierarchical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号