首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial variations in the diamagnetic and paramagnetic contributions to the off-nucleus isotropic shielding, , and to the zz component of the off-nucleus shielding tensor, , around benzene (C6H6) and cyclobutadiene (C4H4) are investigated using complete-active-space self-consistent field wavefunctions. Despite the substantial differences between and around the aromatic C6H6 and the antiaromatic C4H4, the diamagnetic and paramagnetic contributions to these quantities, and , and and , are found to behave similarly in the two molecules, shielding and deshielding, respectively, each ring and its surroundings. The different signs of the most popular aromaticity criterion, the nucleus-independent chemical shift (NICS), in C6H6 and C4H4 are shown to follow from a change in the balance between the respective diamagnetic and paramagnetic contributions. Thus, the different NICS values for antiaromatic and antiaromatic molecules cannot be attributed to differences in the ease of access to excited states only; differences in the electron density, which determines the overall bonding picture, also play an important role.  相似文献   

2.
The distributions of positive carbon cluster ions produced by laser ablation of graphene (G) and graphene oxide (GO) are found to be quite different. Under a typical experimental condition, narrow distributions of even‐numbered clusters from to were observed for G, and broad distributions including even‐numbered clusters from to and odd‐numbered clusters from to were observed for GO. The threshold of laser energy for G is lower than that of GO. Further results of collision‐activated dissociation mass spectrometry indicate that the cluster ions generated from G are structurally similar but are different with those generated from GO or nanodiamonds. It is proposed that the experimentally observed difference can be attributed to the different mechanisms behind the process. A top‐down mechanism including both direct transformation of G to fullerene and fragmentation of large‐sized fullerenes is suggested for the generation of carbon cluster cations in the process of laser ablation of G. For GO, the experimental results are close to those of nanodiamonds and other materials reported previously and can be explained by the generally accepted bottom‐up mechanism. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Complex [PtMe2(PMe2Ar )] ( 1 ), which contains a tethered terphenyl phosphine (Ar =2,6‐(2,6‐i Pr2C6H3)2C6H3), reacts with [H(Et2O)2]BArF (BArF=B[3,5‐(CF3)2C6H3]4) to give the solvent (S) complex [PtMe(S)(PMe2Ar )]+ ( 2⋅S ). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2H4) to afford the corresponding adducts, treatment of 2⋅S with C2H2 yielded instead the allyl complex [Pt(η3‐C3H5)(PMe2Ar )]+ ( 6 ) via the alkyne intermediate [PtMe(η2‐C2H2)(PMe2Ar )]+ ( 5 ). Deuteration experiments with C2D2, and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a PtII‐promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt−Me bond.  相似文献   

4.
Model chemistry G3(MP2,CC)//B3LYP/6-311G(d,p) calculations of the potential energy surface for the reaction of phenyl radical (C6H5) with phenylacetylene (C8H6) have been carried out and combined with Rice-Ramsperger-Kassel-Marcus/Master Equation calculations of temperature- and pressure-dependent rate constants. The results showed that the reaction can serve as a viable source for the formation of phenanthrene via an indirect route involving a primary reaction of phenyl addition to the ortho carbon in the ring of phenylacetylene and H elimination producing 2-ethynylbiphenyl followed by secondary H-assisted isomerization of 2-ethynylbiphenyl to phenanthrene. In the secondary reaction, the H atom adds to the α carbon of the ethynyl side chain, then a six-member ring closure takes place followed by aromatization via an H loss. The channel of H addition to the side chain of 2-ethynylbiphenyl appears to be much faster than H addition to the ortho carbon in the ethynyl-substituted ring leading back to the initial C6H5 + C8H6 reactants. Rate constants for the primary C6H5 + C8H62-ethynylbiphenyl ( p1 ) + H and secondary p1  + Hphenanthrene ( p2 ) + H reactions have been computed in the temperature range of 500-2500 K at pressures of 30 Torr, 1, 10, and 100 atm and fitted to modified Arrhenius expressions. The suggested kinetic scheme and rate constants are proposed as a prototype for the modeling of the growth of polycyclic aromatic hydrocarbons via the phenyl addition-dehydrocyclization (PAC) mechanism involving an addition of a PAH radical to an ethynyl-substituted PAH molecule.  相似文献   

5.
Studies of neutral biomolecules in the gas phase allow for the study of molecular properties in the absence of solvent and charge effects, thus complementing spectroscopic and analytical methods in solution or in ion traps. Some properties, such as the static electronic susceptibility, are best accessed in experiments that act on the motion of the neutral molecules in an electric field. Here, we screen seven peptides for their thermal stability and electron impact ionizability. We identify two tripeptides as sufficiently volatile and thermostable to be evaporated and interfered in the long‐baseline universal matter‐wave interferometer. Monitoring the deflection of the interferometric molecular nanopattern in a tailored external electric field allows us to measure the static molecular susceptibility of Ala–Trp–Ala and Ala–Ala–Trp bearing fluorinated alkyl chains at C‐ and N‐termini. The respective values are and .  相似文献   

6.
A theoretical procedure has been developed and implemented to calculate the optical rotation of chiral molecules in ordered phase via origin‐independent diagonal components , of the optical activity tensor and origin‐independent components , for , of the mixed electric dipole‐electric quadrupole polarizability. Origin independence was achieved by referring these tensors to the principal axis system of the electric dipole dynamic polarizability at the same laser frequency ω. The approach has been applied, allowing for alternative quantum mechanical methods based on different gauges, to estimate near Hartree–Fock values for three chiral molecules, (2R)‐N‐methyloxaziridine C2NOH5, (2R)‐2‐methyloxirane (also referred to as propylene oxide) C3OH6, and ( )‐1,3‐dimethylallene C5H8, at two frequencies. The theoretical predictions can be useful for an attempt at measuring correspondent experimental values in crystal phase. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
In this work, we have measured the rate coefficients of the reactions of isopropyl (propan‐2‐yl), sec‐butyl (butan‐2‐yl), and tert‐butyl (2‐methylpropan‐2‐yl) radicals with molecular chlorine as a function of temperature (190–480 K). The experiments were done in a tubular laminar flow reactor coupled to a photoionization quadrupole mass spectrometer employing a gas‐discharge lamp for ionization. The radicals were homogeneously produced in the reactor by photolyzing suitable precursor molecules with 193‐nm pulsed exciplex laser radiation. The bimolecular rate coefficients were obtained by monitoring the radical decay signals in real time under pseudo–first‐order conditions. The rate coefficients of all three reactions showed negative temperature dependence. The bath gas used in the experiments was helium, and the rate coefficients appeared to be independent of the helium concentrations employed ([2.4–14] × 1016 cm?3) for all three reactions. The rate coefficients of the reactions can be approximated in the studied temperature range by the following parameterizations: We estimate that the overall uncertainties of the measured rate coefficients are ±20%. We were able to observe 2‐chloropropane (i‐C3H7Cl) product for the i‐C3H7 + Cl2 reaction. No products were observed for the other two reactions, and the reasons for this are briefly discussed in the text.  相似文献   

8.
Dr. Luís P. Viegas 《Chemphyschem》2023,24(16):e202300259
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the CxF2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of . In this work we apply the MC-TST/CTSR protocol to the cases and calculate both rate coefficients at 298.15 K with a value of cm3 molecule−1 s−1, practically coincident with the recommended experimental value of kexp= cm3 molecule−1 s−1. We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.  相似文献   

9.
In order to study the electronic structure and structural stability of borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters, especially the stability difference between the borane and carborane C2B3H5. The frontier orbital energy levels of the borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters are calculated at CCSD(T)/aug‐cc‐pVXZ//B3LYP/def2‐TZVPP level. The results are further analyzed by qualitative frontier orbital method based on the cap–ring interaction. The results reveal that: (1) the larger Egap(HOMO‐LUMO energy gap) of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than borane (5 ≤ n ≤ 7) clusters originates from the more effective cap–ring orbital overlap of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than that of borane (5 ≤ n ≤ 7) clusters; (2) the smallest Egap of the borane results from the highest energy level of the ring symmetry‐adapted linear combination orbital of cluster; and (3) the largest Egap of the carborane C2B3H5 is induced by the most effective cap–ring orbital interaction of C2B3H5 cluster. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The bicyclic amido-substituted silicon(I) ring compound Si4{N(SiMe3)Mes}4 2 (Mes=Mesityl=2,4,6-Me3C6H2) features enhanced zwitterionic character and different reactivity from the analogous compound Si4{N(SiMe3)Dipp}4 1 (Dipp=2,6-iPr2C6H3) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHC (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4{N(SiMe3)Mes}4 ⋅ NHC ( 3 ). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid–base complex Si4{N(SiMe3)Mes}4 ⋅ NHC ⋅ BH3 ( 4 ). Coordination of AlBr3 to 2 leads to the adduct 5 . Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2 . This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7 . Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9 .  相似文献   

11.
The experimental and computational characterization of a series of dialkylterphenyl phosphines, PR2Ar′ is described. The new P-donors comprise five compounds of general formula PR2Ar (R=Me, Et, iPr, c-C5H9 and c-C6H11); Ar = 2,6-C6H3-(3,5-C6H3-(CMe3)2)2), and another five PR2Ar′ phosphines containing the bulky alkyl groups iPr, c-C5H9 or c-C6H11, in combination with Ar′=Ar , Ar , or Ar ( L1 – L10 ). Steric and electronic parameters have been determined computationally and from IR and X-ray data obtained for the phosphines and for some derivatives, including tricarbonyl and dicarbonyl nickel complexes, Ni(CO)3(PR2Ar′) and Ni(CO)2(PR2Ar′). In the solid state, the free phosphines PR2Ar′ adopt one of the three possible structures formally related by rotation around the Cipso−P bond. Details on their relative energies and on the influence of the free phosphine structure on its coordination chemistry towards Ni(CO)n (n = 2, 3) fragments has been obtained by experimental and computational methods.  相似文献   

12.
The reactivity of amidinatotetrylenes of the type E(tBu2bzm)R1 (E=Si, Ge; tBu2bzm=N,N′-bis(tertbutyl)benzamidinate; R1=alkyl or aryl) with the chromium Fischer alkynylcarbene complexes [Cr{C(OEt)C2R2}(CO)5] (R2=Ph; ferrocenyl, Fc) has been studied. At room temperature, two different reaction pathways have been identified: (a) attack of the amidinatotetrylene to the alkynyl C2 atom (γ-attack), which leads to σ-allenyl complexes in which the original Ccarbene atom maintains its attachment to the Cr(CO)5 and OEt groups (compounds 3 ), and (b) attack of the amidinatotetrylene to the Ccarbene atom (α-attack), which ends in σ-allenyl complexes in which the original Ccarbene atom is not attached to the metal atom and has been inserted into an E−N bond of the amidinatotetrylene forming an E-C-N-C-N five-membered ring (compounds 4 ). It has been found that compounds 3 are thermodynamically less stable than their corresponding 4 isomers and that some of the former (E=Ge; R1=CH2SiMe3) can be transformed into the latter upon heating. At high temperatures (>70 °C) the reactions involving bulky amidinatotetrylenes (R1=Mes, tBu) end in the carbene-substitution products [Cr{E(tBu2bzm)R1}(CO)5].  相似文献   

13.
Cyclometalated Pd(II) complexes generally show inferior luminescence properties compared with their Pt(II) analogues. The established approach employing tridentate cyclometalating ligands has allowed us to create a series of square planar Pd(II) complexes [Pd( )X] from their protoligands H (2-(6-phenylpyridin-2-yl)thiazoles and -benzothiazoles; coligands X=Cl, Br, I) with extensive variations at the Carene group (phenyl, naphthyl, fluorenyl), the central Npyridine (pyridine, 4-phenylpyridine, 3,5-di-tert-butyl-4-phenylpyridine), and the peripheral Nthiazole (thiazole, benzothiazole) to probe for structural factors that might enhance efficient luminescence. Long-wavelength bands at 400–500 nm were assigned to transitions into mixed ligand-centred/metal-to-ligand charge transfer (MLCT) states based on time-dependent (TD)DFT calculations. The MLCT contributions are rather low, in agreement with relatively long lifetimes and high photoluminescence quantum yields of up to 0.79 recorded in frozen glassy solvent matrices at 77 K along with emission bands showing pronounced vibrational progressions and peaking at about 520 nm. No photoluminescence was observed at 298 K in solution. Variation of the ligand allowed to shift the experimental absorption energies from about 2.4 to 2.7 eV, in good agreement with the electrochemical band gaps (2.58 to 2.81 eV). The theoretical absorption and emission spectra excellently reproduced the experimental trends.  相似文献   

14.
SO2 has been proposed in solar geoengineering as a precursor of H2SO4 aerosol, a cooling agent active in the stratosphere to contrast climate change. Atmospheric ionization sources can ionize SO2 into excited states of , which quickly reacts with trace gases in the stratosphere. In this work we explore the reaction of with excited by tunable synchrotron radiation, leading to ( ), where H contributes to O3 depletion and OH formation. Density Functional Theory and Variational Transition State Theory have been used to investigate the dynamics of the title barrierless and exothermic reaction. The present results suggest that solar geoengineering models should test the reactivity of with major trace gases in the stratosphere, such as H2 since this is a relevant channel for the OH formation during the nighttime when there is not OH production by sunlight. OH oxides SO2, triggering the chemical reactions leading to H2SO4 aerosol.  相似文献   

15.
Carbon 1s core-hole excitation of the molecular anion C2 has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo–double-detachment shows a pronounced vibrational structure associated with and core excitations of the C2 ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 molecular anion by 0.2 Å upon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 and core-excited levels.  相似文献   

16.
In the electrospinning process, the measurement of extension rate of the straight jet is not an easy task. In this study, the diameter profile of the tapering straight jet is determined with a laser light‐scattering technique. Afterwards, the jet extension rate () is derived and used to compare with the solution‐intrinsic rates, for example, the terminal relaxation rate and the Rouse relaxation rate. The extension rate of the straight jet depends on position: it is highest near the cone apex (region I) and decays to a constant value in the major jet (region II) until approaching the jet end (region III), at which the extension rate abruptly drops to nearly zero, that is, I >IIIII ∼ 0. The jet diameter in region III is independent of solution concentration and applied voltage, but is scaled to the flow rate with an exponent of ∼0.37. The derived exponent is consistent with a simple prediction based on the counterbalance between the stretching electric force and the compressive force induced by the air drag force. Provided that air friction becomes overwhelming at the straight jet end, the long electrified jet is likely to buckle, thereby triggering the instability of jet whipping. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 319–329  相似文献   

17.
In this work, the photofragmentation subsequent to valence and Cd4d photoionization of cadmium dichloride (CdCl2) were studied using He I and synchrotron excitation. The measurements were performed with a photoelectron‐photoion coincidence (PEPICO) setup, and the connection between the singly ionized electronic states and cationic fragments was investigated. The valence‐ionized states were found to lead to , Cd+ and CdCl+. The Cd4d? 1 states were found to lead only to Cl+ ions. The observed charge transfer effect between Cd and Cl was concluded to take place due to internal conversion or fluorescence decay to dissociating valence states either directly or through consecutive fragmentation. The fragmentation energetics were investigated with molecular ab initio calculations, and the calculated energies were found to agree with the detected fragment appearances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The process of ion resonance dipolar excitation in a linear ion trap by 2 ejection waveforms with close frequencies is studied. The physical mechanism of increasing the resolving power using the ion excitation is a nonlinearity of the electric radio frequency fields caused by space charge. Using 2 resonance forces with 2 close frequencies leads to the completion of 2 excitation processes. In the case of the perfect quadrupole electric field, the ion motion equations are linear, and as a result, the respondent ion ensemble is also a linear and valid superposition principle. Nevertheless, the resolution increases (20%) in the case of lack of a space charge in an operating mode with a dual‐frequency. The numerical simulations show that the mass shift is removed, and the mass resolution is increased via dual‐frequency resonance excitation when the frequency difference (approximately 2.5 kHz) is relatively small and the phase difference of 2 harmonic signals is even at a high linear ion density of up to 50 000 ions per radius field r0 .  相似文献   

19.
Reduction of the uranium(III) metallocene [(η5‐C5iPr5)2UI] ( 1 ) with potassium graphite produces the “second‐generation” uranocene [(η5‐C5iPr5)2U] ( 2 ), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground‐state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f3 6d1. Appreciable covalent contributions to the metal‐ligand bonds were determined from a computational study of 2 , including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbitals with essentially pure 5f character, the fourth electron resides in an orbital defined by strong 7s‐6d mixing.  相似文献   

20.
The reduction of tris(pyridine‐2‐carboxylato)manganese(III) by dithionite has been investigated within the temperature window 288–303 K and at pH range 5.22–6.10 in sodium picolinate–picolinic acid buffer medium. The reaction obeys the following stoichiometry: The reaction is described in terms of a mechanism that involves an initial complex formation between S2O42? and [MnIII(C5H4NCO2)3] followed by S–S bond cleavage to give 2HSO3? and [MnII(C5H4NCO2)2(H2O)2] as the products via the formation of SO2●? radical anion. Kinetics and spectrophotometric evidences are cited in favor of the suggested mechanism. Thermodynamic parameters associated with the equilibrium step and the activation parameters with the rate‐determining step have been computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号