首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multiple‐channel reactions SiH3 + SiH3CH3 → products and SiH3 + SiH2(CH3)2 → products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory (ICVT) with small‐curvature tunneling (SCT) correction over the temperature range of 200–2400 K. The theoretical three‐parameter expression k1(T) = 2.39 × 10−23T4.01exp(−2768.72/T) and k2(T) = 9.67 × 10−27T4.92exp(−2165.15/T) (in unit of cm3 molecule−1 s−1) are given. Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel because of the smaller barrier height among eight channels considered. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

2.
The multiple‐channel reactions X + CF3CH2OCF3 (X = F, Cl, Br) are theoretically investigated. The minimum energy paths (MEP) are calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for major reaction channels are calculated by canonical variational transition state theory (CVT) with small‐curvature tunneling (SCT) correction over the temperature range 200–2000 K. The theoretical three‐parameter expressions for the three channels k1a(T) = 1.24 × 10?15T1.24exp(?304.81/T), k2a(T) = 7.27 × 10?15T0.37exp(?630.69/T), and k3a(T) = 2.84 × 10?19T2.51 exp(?2725.17/T) cm3 molecule?1 s?1 are given. Our calculations indicate that hydrogen abstraction channel is only feasible channel due to the smaller barrier height among five channels considered. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

3.
4.
The theoretical investigations were performed on the reaction mechanisms for the title reactions CH(3)C(O)CH(3) + Cl --> products (R1), CH(3)C(O)CH(2)Cl + Cl --> products (R2), CH(3)C(O)CHCl(2) + Cl --> products (R3), and CH(3)C(O)CCl(3) + Cl --> products (R4) by ab initio direct dynamics approach. Two different reaction channels have been found: abstract of the H atom from methyl (--CH(3)) group or chloromethyl (--CH(3-n)Cl(n)) group of chloroacetone and addition of a Cl atom to the carbon atom of the carbonyl group of chloroacetone followed by methyl or chloromethyl eliminations. Because of the higher potential energy barrier, the contribution of addition-elimination reaction pathway to the total rate constants is very small and thus this pathway is insignificant in atmospheric conditions. The rate constants for the H-abstraction reaction channels are evaluated by using canonical variational transition state theory incorporating with the small-curvature tunneling correction. Theoretical overall rate constants are in good agreement with the available experimental values and decrease in the order of k(1) > k(2) > k(3) > k(4). The results indicate that for halogenated acetones the substitution of halogen atom (F or Cl) leads to the decrease in the C--H bond reactivity and more decrease of reactivity is caused by F-substitution.  相似文献   

5.
6.
An HPLC‐PAD‐atmospheric pressure chemical ionization‐MS metabolite profiling analysis was conducted on the marine echinoderm Marthasterias glacialis (spiny sea‐star). Bio‐guided purification of the methanolic extract led to the isolation of several carotenoids, namely zeaxanthin, astaxanthin and lutein. These compounds were characterized using both UV–Vis characteristics and MS spectra interpretation. No previous works addressed the MS analysis of carotenoids present in this organism. The purified carotenoid fraction displayed a strong cell proliferation inhibition against rat basophilic leukemia RBL‐2H3 (IC25=268 μg/mL) cancer cell line. Against healthy V79 (rat lung fibroblasts (IC25=411 μg/mL)) cell line, however, toxicity was lower, as it is desired for anti‐cancer molecules. This study suggests that M. glacialis may constitute a good source of bioactive compounds that can be used as lead compounds for the pharmaceutical industry.  相似文献   

7.
The multiple-channel reactions SiH(3) + SiH(CH(3))(3) --> products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD (single-point) method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range of 200-2400 K. The theoretical three-parameter expression k(T) = 2.44 x 10(-23)T(3.94) exp(-4309.55/T) cm(3)/(molecule s) is given. Our calculations indicate that hydrogen abstraction channel R1 from SiH group is the major channel because of the smaller barrier height among five channels considered.  相似文献   

8.
Earlier work on the reactions of O(3P) atoms with HCl and HBr has been extended by measuring rate constants for A flow-tube method was used with chemiluminescent monitoring of the removal of atomic oxygen. Rate constants were measured at temperatures between 340 and 489 K for (2a) and 295 and 419 K for (2b); they can be matched by the Arrhenius expressions: where the units are cm3 molecule?1 sec?1 and the errors correspond to a single standard deviation. The results of a quasiclassical trajectory study of collisions of O(3P) with HCl (v = 0,1, and 2) and DCl (v= 0,1, and 2) are also reported. These strengthen the conclusion that, although the rates of reactions (1a) and (2a) are selectively enhanced by vibrationally exciting HCl or DCl, molecules with 0 < v ? 2 are mainly removed in collisions with O(3P) atoms by nonreactive relaxation.  相似文献   

9.
The kinetics of the reactions of Br2 and NO2 with ground state oxygen atoms have been studied over a wide temperature range, T = 220-950 K, using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: O + NO2 → NO + O2 (1) and O + Br2 → Br + BrO (2). The rate constant of reaction (1) was determined under pseudo–first-order conditions, either monitoring the kinetics of O-atom or NO2 consumption in excess of NO2 or of the oxygen atoms, respectively: k1 = (6.1 ± 0.4) × 10−12 exp((155 ± 18)/T) cm3 molecule−1 s−1 (where the uncertainties represent precision at the 2σ level, the estimated total uncertainty on k1 being 15% at all temperatures). The temperature dependence of k1, found to be in excellent agreement with multiple previous low-temperature data, was extended to 950 K. The rate constant of reaction (2) determined under pseudo–first-order conditions, monitoring the kinetics of Br2 consumption in excess of O-atoms, showed upward curvature at low and high temperatures of the study and was fitted with the following three-parameter expression: k2 = 9.85 × 10−16 T1.41 exp(543/T) cm3 molecule−1 s−1 at T = (220-950) K, which is recommended from the present study with an independent of temperature conservative uncertainty of 15% on k2.  相似文献   

10.
Peculiarities of interaction of H+, Me3C+, and Me3Si+ ions with functional groups of molecules in the gas phase have been studied. Proton tends to form chelates with virtually all of the functional groups studied, whereas Me3Si+ ions exhibit no capacity for chelation. Using isomeric xylenes as examples it was shown that Me3Si+ ions (unlike Me3C+ ions) experience virtually no steric hindrance when they react with nucleophilic centers. Effects of functional groups present in molecules of nitriles on the generation of [M+Me3C]+ adducts in the gas phase and the Ritter reaction in solution were estimated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1767–1773, September, 1995.This work was carried out with financial support from the International Science Foundation (Grant MA7 000) and the Russian Foundation for Basic Research (Project No. 93-03-18033).  相似文献   

11.
The adiabatic mechanism of the reaction of trichloroethylene with O(3P), exploring the various O-atom addition and H-atom abstraction channels, is theoretically studied at the MP2/6-311++G(2d, 2p), MP2/aug-cc-pVTZ, CCSD/6-31G(d), G3, and CBS-QB3 levels of theory. From a kinetic point of view, the addition to the less substituted carbon atom of the double bond is more favorable than the addition to the more substituted carbon. Such O-atom addition reactions are favored over the one possible hydrogen-abstraction reaction. Calculations of the present study showed that five products are obtained: HCCl + C(O)Cl2 (P1), Cl + ClC(O)CHCl (P2), H + ClC(O)CCl2 (P3), Cl + HC(O)CCl2 (P4), and CH(O)Cl + CCl2 (P5). The products P2 and P4 are found to be the most favored ones. The kinetic calculations of rate constant in the range of 285–395 K are performed at the CBS-QB3 level of theory and are in conformity with the experimental outcomes.  相似文献   

12.
Hydrogen atoms and SiHx (x = 1–3) radicals coexist during the chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a‐Si:H) thin films for Si‐solar cell fabrication, a technology necessitated recently by the need for energy and material conservation. The kinetics and mechanisms for H‐atom reactions with SiHx radicals and the thermal decomposition of their intermediates have been investigated by using a high high‐level ab initio molecular‐orbital CCSD (Coupled Cluster with Single and Double)(T)/CBS (complete basis set extrapolation) method. These reactions occurring primarily by association producing excited intermediates, 1SiH2, 3SiH2, SiH3, and SiH4, with no intrinsic barriers were computed to have 75.6, 55.0, 68.5, and 90.2 kcal/mol association energies for x = 1–3, respectively, based on the computed heats of formation of these radicals. The excited intermediates can further fragment by H2 elimination with 62.5, 44.3, 47.5, and 56.7 kcal/mol barriers giving 1Si, 3Si, SiH, and 1SiH2 from the above respective intermediates. The predicted heats of reaction and enthalpies of formation of the radicals at 0 K, including the latter evaluated by the isodesmic reactions, SiHx + CH4 = SiH4 + CHx, are in good agreement with available experimental data within reported errors. Furthermore, the rate constants for the forward and unimolecular reactions have been predicted with tunneling corrections using transition state theory (for direct abstraction) and variational Rice–Ramsperger–Kassel–Marcus theory (for association/decomposition) by solving the master equation covering the P,T‐conditions commonly employed used in industrial CVD processes. The predicted results compare well experimental and/or computational data available in the literature. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We report the first positive chemical ionization (PCI) fragmentation mechanisms of phthalates using triple‐quadrupole mass spectrometry and ab initio computational studies using density functional theories (DFT). Methane PCI spectra showed abundant [M + H]+, together with [M + C2H5]+ and [M + C3H5]+. Fragmentation of [M + H]+, [M + C2H5]+ and [M + C3H5]+ involved characteristic ions at m/z 149, 177 and 189, assigned as protonated phthalic anhydride and an adduct of phthalic anhydride with C2H5+ and C3H5+, respectively. Fragmentation of these ions provided more structural information from the PCI spectra. A multi‐pathway fragmentation was proposed for these ions leading to the protonated phthalic anhydride. DFT methods were used to calculate relative free energies and to determine structures of intermediate ions for these pathways. The first step of the fragmentation of [M + C2H5]+ and [M + C3H5]+ is the elimination of [R? H] from an ester group. The second ester group undergoes either a McLafferty rearrangement route or a neutral loss elimination of ROH. DFT calculations (B3LYP, B3PW91 and BPW91) using 6‐311G(d,p) basis sets showed that McLafferty rearrangement of dibutyl, di(‐n‐octyl) and di(2‐ethyl‐n‐hexyl) phthalates is an energetically more favorable pathway than loss of an alcohol moiety. Prominent ions in these pathways were confirmed with deuterium labeled phthalates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
With proton transfer reaction‐mass spectrometry standard operating conditions, analysis of alcoholic beverages is an analytical challenge. Ethanol reacts with the primary ion H3O+ leading to its depletion and to formation of ethanol‐related ions and clusters, resulting in unstable ionization and in significant fragmentation of analytes. Different methods were proposed but generally resulted in lowering the sensitivity and/or complicating the mass spectra. The aim of the present study was to propose a simple, sensitive, and reliable method with fragmentation as low as possible, linearity within a realistic range of volatile organic compounds concentrations, and applicability to in vivo dynamic aroma release (nosespace) studies of wines. For in vitro analyses, a reference flask containing a hydro‐alcoholic solution (10% ethanol) was permanently connected to the PTR‐MS inlet in order to establish ethanol chemical ionization conditions. A low electric field strength to number density ratio E/N (80 Td) was used in the drift‐tube. A stable reagent ion distribution was obtained with the primary protonated ethanol ion C2H5OH2+ accounting for more than 80% of the ionized species. The ethanol dimer (C2H5OH)2H+ accounted for only 10%. Fragmentation of some aroma molecules important for white wine flavor (various esters, linalool, cis‐rose oxide, 2‐methylpropan‐1‐ol, 3‐methylbutan‐1‐ol, and 2‐phenylethanol) was studied from same ethanol content solutions connected alternatively with the reference solution to the instrument inlet. Linear dynamic range and limit of detection (LOD) were determined for ethyl hexanoate. Fragmentation of the protonated analytes was limited to a few ions of low intensity, or to specific fragment ions with no further fragmentation. Association and/or ligand switching reactions from ethanol clusters were only significant for the primary alcohols. Interpretation of the mass spectra was straightforward with easy detection of diagnostic ions. These results made this ethanol ionization method suitable for direct headspace analyses of model wines and to their nosespace analyses.  相似文献   

15.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

16.
A series of α‐acyloxyhydroperoxy aldehydes was analyzed with direct infusion electrospray ionization tandem mass spectrometry (ESI/MSn) as well as liquid chromatography coupled with the mass spectrometry (LC/MS). Standards of α‐acyloxyhydroperoxy aldehydes were prepared by liquid‐phase ozonolysis of cyclohexene in the presence of carboxylic acids. Stabilized Criegee intermediate (SCI), a by‐product of the ozone attack on the cyclohexene double bond, reacted with the selected carboxylic acids (SCI scavengers) leading to the formation of α‐acyloxyhydroperoxy aldehydes. Ionization conditions were optimized. [M + H]+ ions were not formed in ESI; consequently, α‐acyloxyhydroperoxy aldehydes were identified as their ammonia adducts for the first time. On the other hand, atmospheric‐pressure chemical ionization has led to decomposition of the compounds of interest. Analysis of the mass spectra (MS2 and MS3) of the [M + NH4]+ ions allowed recognizing the fragmentation pathways, common for all of the compounds under study. In order to get detailed insights into the fragmentation mechanism, a number of isotopically labeled analogs were also studied. To confirm that the fragmentation mechanism allows predicting the mass spectrum of different α‐acyloxyhydroperoxy aldehydes, ozonolysis of α‐pinene, a very important secondary organic aerosol precursor, was carried out. Spectra of the two ammonium cationized α‐acyloxyhydroperoxy aldehydes prepared with α‐pinene, cis‐pinonic acid as well as pinic acid were predicted very accurately. Possible applications of the method developed for the analysis of α‐acyloxyhydroperoxy aldehydes in SOA samples, as well as other compounds containing hydroperoxide moiety are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The mechanisms and kinetics studies of the OH radical with alkyl hydroperoxides CH(3)OOH and CH(3)CH(2)OOH reactions have been carried out theoretically. The geometries and frequencies of all the stationary points are calculated at the UBHandHLYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies method at the MC-QCISD level of theory. For two reactions, five H-abstraction channels are found and five products (CH(3)OO, CH(2)OOH, CH(3)CH(2)OO, CH(2)CH(2)OOH, and CH(3)CHOOH) are produced during the above processes. The rate constants for the CH(3)OOH/CH(3)CH(2)OOH + OH reactions are corrected by canonical variational transition state theory within 250-1500 K, and the small-curvature tunneling is included. The total rate constants are evaluated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained.  相似文献   

18.
The reaction mechanism of CF(3)CH(2)OH with OH is investigated theoretically and the rate constants are calculated by direct dynamics method. The potential energy surface (PES) information, which is necessary for dynamics calculation, is obtained at the B3LYP/6-311G (d, p) level. The single-point energy calculations are performed at the MC-QCISD level using the B3LYP geometries. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. By means of isodesmic reactions, the enthalpies of the formation for the species CF(3)CH(2)OH, CF(3)CHOH, and CF(3)CH(2)O are estimated at the MC-QCISD//B3LYP/6-311G (d, p) level of theory. The rate constants for two kinds of H-abstraction channels are evaluated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) over a wide range of temperature 200-2000 K. The calculated results are in good agreement with the experimental values in the temperature region 250-430 K. The present results indicate that the two channels are competitive. Below 289 K, hydroxyl-H-abstraction channel has more contribution to the total rate constants than methylene-H-abstraction channel, while above 289 K, methylene-H-abstraction channel becomes more important and then becomes the major reaction channel.  相似文献   

19.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + C6H6 reaction were theoretically characterized using the "complete basis set" CBS-QB3 model chemistry. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. It is newly found that electrophilic O-addition onto a carbon atom in benzene can occur in parallel on two triplet surfaces, 3A' and 3A' '; the results predict O-addition to be dominant up to combustion temperatures. Major expected end-products of the addition routes include phenoxy radical + H*, phenol and/or benzene oxide/oxepin, in agreement with the experimental evidence. While c-C6H5O* + H* are nearly exclusively formed via a spin-conservation mechanism on the lowest-lying triplet surface, phenol and/or benzene oxide/oxepin are mainly generated from the lowest-lying singlet surface after inter-system crossing from the initial triplet surface. CO + c-C5H6 are predicted to be minor products in flame conditions, with a yield < or = 5%. The O + C6H6 --> c-C5H5* + *CHO channel is found to be unimportant under all relevant combustion conditions, in contrast with previous theoretical conclusions (J. Phys. Chem. A 2001, 105, 4316). Efficient H-abstraction pathways are newly identified, occurring on two different electronic state surfaces, 3B1 and 3B2, resulting in hydroxyl plus phenyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion, with estimated contributions of ca. 50% at 2000 K. The overall thermal rate coefficient k(O + C6H6) at 300-800 K was computed using multistate transition state theory: k(T) = 3.7 x 10-16 x T 1.66 x exp(-1830 K/T) cm(3) molecule(-1) s(-1), in good agreement with the experimental data available.  相似文献   

20.
The reactivity of a series of commonly used halogenated compounds (trihalomethanes, chlorofluorocarbon, hydrochlorofluorocarbon, fluorocarbons, and hydrofluoroolefin) with hydroxide and oxygen anion is studied in a compact Fourier transform ion cyclotron resonance. O is formed by dissociative electron attachment to N2O and HO by a further ion‐molecule reaction with ammonia. Kinetic experiments are performed by increasing duration of introduction of the studied molecule at a constant pressure. Hydroxide anion reactions mainly proceed by proton transfer for all the acidic compounds. However, nucleophilic substitution is observed for chlorinated and brominated compounds. For fluorinated compounds, a specific elimination of a neutral fluorinated alkene is observed in our results in parallel with the proton transfer reaction. Oxygen anion reacts rapidly and extensively with all compounds. Main reaction channels result from nucleophilic substitution, proton transfer, and formal H2+ transfer. We highlight the importance of transfer processes (atom or ion) in the intermediate ion‐neutral complex, explaining part of the observed reactivity and formed ions. In this paper, we present the first reactivity study of anions with HFO 1234yf. Finally, the potential of O and HO as chemical ionization reagents for trace analysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号