首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Series of hyperbranched PNP ligands ( L1 – L3 ) were prepared using three low-generation hyperbranched molecules with the same branching chains and functional groups but different alkyl chain length as backbones in a mixed solvent of acetonitrile and dichloromethane. The chromium complexes ( Cr1 – Cr3 ) were obtained by reacting with CrCl3(THF)3 and the corresponding ligands ( L1 – L3 ). Both L1 – L3 and Cr1 – Cr3 were characterized by elemental analysis, Fourier transform infrared and electrospray ionization–mass spectrometry as well as 1H nuclear magnetic resonance (NMR) and 31P NMR measurements in the case of the ligands. When activated with different aluminum co-catalysts, all three chromium complexes were able to catalyze the ethylene oligomerization, but the products of the ethylene oligomerization were mainly dependent on ethylene pressure, co-catalyst and ligand backbone. Upon activation with methylaluminoxane, the catalytic activity and the selectivity of C8 olefin increased with increasing of ethylene pressure for Cr1 , the catalytic activity was 13.83 × 105 g·(mol Cr·h)−1 and the main product was C8 olefin (50.68%) at the ethylene pressure of 4.0 MPa. When activated with diethylaluminium chloride, ethylaluminium dichloride and ethylaluminum sesquichloride, Cr1 showed the lower catalytic activity and the higher selectivity of C4 olefin in toluene. An increase in the length of alkyl chain in the hyperbranched PNP ligand backbone caused a decrease in the catalytic activity and an increase in the selectivity of C8 + olefin. The PNP chromium complexes exhibited higher selectivity for higher carbon number olefins compared with the dendritic PNP chromium complex ( Cr5 ).  相似文献   

2.
A series of new Ni(II) complexes of general formula Ni{ZNO} Br ( 2a‐i ) (ZNO = phenoxy/naphthoxy‐imine with pendant N‐ and O‐donor groups) were prepared and characterized by elemental analysis, IR spectroscopy, ESI‐HRMS, and by X‐ray crystallography for 2e . In the solid state, 2e features a monomeric structure with κ3 coordination of the monoanionic naphthoxy‐imine‐quinoline ligand onto the nickel center. Upon activation with MAO, both classes of nickel catalysts were able to produce selectively 1‐butene (81.5–92.1 wt%) with turnover frequencies (TOFs) varying from 3,100 to 24,300 mol(C2H4) mol (Ni)?1 h?1. Nickel precatalysts bearing phenoxy‐imine ligands were much more active than its naphthoxy analogous under the same conditions. The use of a mixture of cocatalysts (MAO/TMA or MAO/TiBA) resulted in poor activities; however the presence of TiBA in the milieu led to a significant improvement on selectivity for 1‐hexene (25.5 wt%). Under optimized conditions ([Ni] = 10 μmol, 30 °C, oligomerization time = 5 min, 20 bar ethylene, [Al]/[Ni] = 600), precatalyst 2c led to TOF = 59,900 mol(C2H4) mol(Ni)?1 h?1 and selectivity for 1‐butene of 89.5 wt%.  相似文献   

3.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

4.
Three hyperbranched salicylaldimine ligands with tetradecyl as core, with hexadecyl as core and with octadecyl as core were synthesized in good yields. These ligands were reacted with cobalt chloride hexahydrate to form three complexes ( C1 – C3 ). The compounds were characterized using Fourier transform infrared, 1H NMR, mass and UV spectroscopies and thermogravimetric and differential thermal analyses. The catalytic properties of the hyperbranched cobalt complexes were evaluated for ethylene oligomerization. The effects of solvent and reaction parameters (Al/Co molar ratio, temperature and reaction pressure) on ethylene oligomerization were studied using the cobalt complex C3 as pre‐catalyst and methylaluminoxane (MAO) as co‐catalyst. Under these conditions ([Co] = 5 μmol, Al/Co = 500, 25 °C, 0.5 MPa ethylene, 30 min), the catalytic activity of complex C3 in toluene was 1.85 × 105 g (mol Co)−1 h−1 and the selectivity for C8+ oligomers was 55.72%. The complex structure also had a significant influence on both the catalytic activity and selectivity. All three cobalt complexes, activated with MAO, showed moderate activities towards ethylene oligomerization and the activity of cobalt complex C1 was up to 1.99 × 105 g (mol Co)−1 h−1. The kinds of metal center of complexes (cobalt complex C1 and nickel complex with tetradecyl as core) and their catalytic properties were investigated in detail under the same conditions.  相似文献   

5.
A series of pyrrole‐containing diarylphosphine and diarylphosphine oxide ligands were prepared. The catalytic activity of the corresponding in‐situ‐generated chromium catalysts was investigated during selective ethylene oligomerization reactions. Variations in the ligand system were introduced by modifying the diarylphosphine and pyrrole moieties that affect the steric and electronic properties. Minor changes in the ligand structure and the composition of activators significantly changed the catalytic activity, selectivity toward linear alpha‐olefins (LAO) versus polyethylene (PE), and the distribution of oligomeric products. The presence of trifluoromethyl groups on the diphenyl rings in ligand 3 promoted oxidation to form the corresponding phosphine oxide structure, 3o , which dramatically enhanced the catalytic activity of ethylene trimerization. The in‐situ‐generated chromium complex based on 3o activated by DMAO (dry methylaluminoxane)/TIBA (triisobutylaluminum) was used to achieve activity of about 1250 g (mmol of Cr)−1 h−1 with 98.5 mol % 1‐hexene, along with a negligible amount of PE side product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 444–450  相似文献   

6.
Two novel nickel (II) complexes, CH{C(CF3)NAr}2NiBr ( 1 , Ar = 2,6‐iPr2C6H3 and 2 , 2,6‐Me2C6H3), were synthesized by the reaction of the lithium salt of fluorinated β‐diketiminate backbone ligands with (1,2‐dimethoxyethane) nickel (II) bromide [(DME)NiBr2]. The solid‐state structure of nickel (II) complex 2 as a dimer reveals four‐coordination and a tetrahedral geometry with bromide bridged by single crystal X‐ray measurement. Both complexes catalyze simultaneous polymerization and oligomerization of ethylene when activated by methylaluminoxane (MAO). It was found that the reaction temperature has a pronounced effect on the activity of ethylene polymerization and the molecular weight of obtained polyethylene. In addition, the nickel catalytic systems predominantly produce linear polyethylene with unsaturated end groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A set of vanadium(III) complexes, namely {SNO}VCl2(THF)2 ( 2a , SNO = thiophene‐(N═CH)‐phenol; 2b , SNO = 5‐phenylthiophene‐(N═CH)‐phenol; 2c , SNO = 5‐phenylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2d , SNO = 5‐methylthiophene‐(N═CH)‐phenol; 2e , SNO = 5‐methylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2f , SNO = 5‐methylthiophene‐(N═CH)‐2‐methylphenol; 2g , SNO = 5‐methylthiophene‐(N═CH)‐4‐fluorophenol), were synthesized by reaction of VCl3(THF)3 with phenoxy–imine–thiophene proligands ( 1a – g ). All vanadium(III) complexes were characterized using elemental analysis and infrared and electron paramagnetic resonance spectroscopies. Upon activation with methylaluminoxane (MAO), vanadium precatalysts 2a – g proved active in the polymerization of ethylene (213.6–887.2 kg polyethylene (mol[V])−1⋅h−1), yielding high‐density polyethylenes with melting temperatures in the range 133–136 °C and crystallinities varying from 28 to 41%. The 2e/ MAO catalyst system was able to copolymerize ethylene with 1‐hexene affording poly(ethylene‐co ‐1‐hexene)s with melting temperatures varying from 126 to 102 °C and co‐monomer incorporation in the range 3.60–4.00%.  相似文献   

8.
Two new hyperbranched bispyridylamine ligands and multinuclear chromium complexes were synthesized with 1.0?G hyperbranched macromolecules, 2-chloropyridine, 2-chloro-4-methylpyridine and CrCl3(THF)3 as raw materials. The structures of hyperbranched ligands and chromium complexes were characterized by UV, FT-IR, 1H NMR, ESI-MS, and elemental analysis. These hyperbranched chromium complexes were evaluated as catalyst precursors by using MAO as activator in the oligomerization of ethylene. Effects of reaction temperature, reaction pressure, Al/Cr molar ratio, concentration of catalyst, solvent, and the structure of catalysts on the catalytic activity and product selectivity were investigated. The oligomerization results showed that with increase of reaction temperature, reaction pressure, and Al/Cr molar ratio, the catalytic activity increased and then decreased; the catalytic activity continuously decreased as the amount of catalyst increased. The products were mainly based on C6 and C8. Under optimized conditions, the catalytic system of hyperbranched NNN/Cr(III)/MAO led to activity of 1.26?×?105 g/(mol·Cr·h) and 63.34% selectivity for C6 and C8.  相似文献   

9.
Novel heterogeneous catalysts were prepared using immobilization of bis(2‐decylsulfanylethyl)amine–CrCl3 (Cr‐SNS‐D) on various supports, namely commercial TiO2, Al2O3 and magnetic Fe3O4@SiO2 nanoparticles, to yield solid catalysts denoted as support@Cr‐SNS‐D. The structure of the catalysts was confirmed on the basis of spectroscopic analyses, N2 adsorption–desorption and inductively coupled plasma (ICP) analysis. The surface areas of Al2O3@Cr‐SNS‐D, Fe3O4@SiO2@Cr‐SNS‐D and TiO2@Cr‐SNS‐D catalysts were determined to be 70, 23 and 41 m2 g?1, respectively. A decrease in surface area from that of the supports clearly establishes accurate immobilization of Cr‐SNS‐D catalyst on the surface of the parent carriers. The loading of Cr was determined to be 0.02, 0.16 and 0.11 mmol g?1 for Cr‐SNS‐D supported on TiO2, Al2O3 and Fe3O4@SiO2, respectively, using ICP analysis. After preparation and full characterization of the catalysts, ethylene trimerization reaction was accomplished in 40 ml of dry toluene, at 80°C and 25 bar ethylene pressure and in the presence of methylaluminoxane (Al/Cr = 700) within 30 min. The supported chromium catalysts were found to be efficient and selective for the ethylene trimerization reaction. The highest activity (74 650 g1‐hexene gCr?1 h?1), as well as no polyethylene formation during reaction processes, was observed when TiO2 was used as the catalyst support.  相似文献   

10.
In this study, five small band gap thiophene ( TH )–thienopyrazine ( TP ) conjugated copolymers were synthesized by Stille‐coupling reaction. The polymer structures consisted of one to four thiophene rings with the TP of different side groups provided a systematical investigation on the structure–electronic property relationship. The absorption maxima of the polymer films decreased from 850 to 590 nm as the thiophene moieties increased from thiophene to quaterthiophene. The optical and electrochemical band gaps of the studied poly[2,3‐didodecyl‐5‐(thiophen‐2‐yl)thieno[3,4‐b]pyrazine] ( PTHTP‐C12 ) were 0.97 and 0.78 eV, respectively, indicating a significant intramolecular charge transfer. The theoretical geometry and electronic properties of the TH ‐ TP copolymers by the density functional theory at the B3LYP level and 6‐31G(d) basis set suggested that the bond length alternation enlarged with enhancing the thiophene content and resulted in the variation on the polymer band gap. The relatively small theoretical effective mass of poly( TH ‐alt‐ TP ) also indicated its potential applications for field transistor applications. Our study demonstrates the tunable electronic properties of small band gap copolymers by the thiophene content and the resulted geometry variation. Such polymers could be potentially used for near‐infrared electronic and optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5872–5883, 2007  相似文献   

11.
Cationic polymers can bind DNA to form polyplexes, which are noncovalent complexes used for gene delivery into the targeted cells. For more insight on such biologically relevant systems, the noncovalent complexes between the cationic polymer poly(ethylene imine) (PEI) and the nucleotide mimicking dye Cibacron Blue F3G‐A (CB) were investigated using mass spectrometry methods. Two PEIs of low molecular weight were utilized (Mn ≈ 423 and 600 Da). The different types of CB anions produced by Na+/H+ exchanges on the three sulfonic acid groups of CB and their dehydrated counterparts were responsible for complex formation with PEI. The CB anions underwent noncovalent complex formation with protonated, but not with sodiated PEI. A higher proportion of cyclic oligomers were detected in PEI423 than PEI600, but both architectures formed association products with CB. Tandem mass spectrometry studies revealed a significantly stronger noncovalent interaction between PEI and dehydrated CB than between PEI and intact CB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The alkenyl substituted phenoxy–imine complexes [2‐C3H5‐6‐(2, 3, 5, 6‐C6F4H‐N?CH)C6H3O]2TiCl2 (C3H5=? CH2? CH?CH2 or ? CH?CH? CH3) are synthesized and characterized by 1H NMR, 13C NMR, and elemental analysis. When activated by MAO, they show high activity for the polymerization of ethylene to UHMWPE under different conditions (temperatures and polymerization time). Most of the resulting polymers have high molecular weights (>1.0 × 106 g·mol?1) and high melting points as well as crystallinity. To clarify the effect of the alkenyl group on the catalytic performance and the resultant polymer microstructure, the corresponding saturated complexes of type [2‐C3H7?6‐(2, 3, 5, 6‐C6F4H‐N?CH)C6H3O]2TiCl2 where C3H7 = –CH2? CH2? CH3 or ? CH(CH3)2 were synthesized and tested as catalysts in ethylene polymerization under the same reaction conditions. The microstructure and morphologies of these two species of PE samples were fully compared by the analysis of 13C NMR, GPC, DSC, and SEM. As a result, the allyl substituted complex show the highest activity to prepare the highest molecular weight polyethylene of all the catalysts. An interesting feature of the UHMWPE produced by these four catalysts is that they contain only a few short‐chain branches (mainly methyl, isobutyl and 2‐methylhexyl branches) in a low amount (<2.7 branches/1000 C). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3808–3818  相似文献   

13.
Two novel dendritic poly(amido-amine) (PAMAM) bridged salicylaldimine ligands were synthesized by Schiff base reaction using 1.0 generation dendritic PAMAM as bridged groups. The cobalt complex with 1,4-butanediamine as core (C1) and the cobalt complex with 1,6-hexanediamine as core (C2) based on dendritic PAMAM bridged salicylaldimine ligands were prepared by metallic coordination reaction, respectively. The structures of the ligands and the dendritic cobalt complexes were characterized by fourier transform infrared (FTIR), ultraviolet spectra (UV), hydrogen nuclear magnetic resonance (1H NMR) and electrospray ionization mass spectra (ESI-MS). The complexes C1 and C2 were evaluated as catalyst precursors for ethylene oligomerization after being activated with methylaluminoxane (MAO), diethylaluminum chloride (Et2AlCl), ethylaluminium dichloride (EtAlCl2) and ethylaluminum sesquichloride (EASC). The dendritic cobalt complexes exhibited the highest activity and selectivity for high carbon oligomers with EASC as activator. Under the conditions of 1.0 MPa, 25°C and Al/Co molar ratio 1500, the catalytic activity and selectivity for C10–C20 using C1 were 3.44×106 g·(mol Co·h)?1 and 76.53% after activation with EASC, and the catalytic activity and selectivity for C10–C20 using C2 were 3.42×106 g·(mol Co·h)?1 and 84.50%, respectively.  相似文献   

14.
A series of bis(phenoxy‐imine) vanadium and zirconium complexes with different types of R3 substituents at the nitrogen atom, where R3 = phenyl, naphthyl, or anthryl, was synthesized and investigated in ethylene polymerization. Moreover, the catalytic performance was verified for three supported catalysts, which had been obtained by immobilization of bis[N‐(salicylidene)‐1‐naphthylaminato]M(IV) dichloride complexes (M = V, Zr, or Ti) on the magnesium carrier MgCl2(THF)2/Et2AlCl. Catalytic performance of both supported and homogeneous catalysts was verified in conjunction with methylaluminoxane (MAO) or with alkylaluminium compounds (EtnAlCl3?n, n = 1–3). The activity of FI vanadium and zirconium complexes was observed to decline for the growing size of R3, whereas the average molecular weight (MW) of the polymers was growing for larger substituent. Moreover, vanadium complexes exhibited the highest activity with EtAlCl2, whereas zirconium ones showed the best activity with MAO. All immobilized systems were most active in conjunction with MAO, and their activities were higher than those for their homogeneous counterparts, and they gave polymers with higher average MWs. That effect was in particular evident for the titanium catalyst. The vanadium complex 3 was also a good precursor for ethylene/1‐octene copolymerization; however, its immobilization reduced its potential for incorporation of a comonomer into a polyethylene chain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A new series of Cr (III) complexes [Cr{1-(3-phenoxypropyl)-1H-pyrazole}Cl3]2 (Cr1), [Cr{1-(3-phenoxypropyl)-3,5-dimethyl-1H-pyrazole}Cl3]2 (Cr2 ), and [Cr{1-(3-phenoxypropyl)-3-phenyl-1H-pyrazole}Cl3]2 (Cr3) have been synthesized and characterized by elemental analysis, high-resolution mass spectrometry (HRMS) and IR spectroscopy. Upon activation with methylaluminoxane (MAO), chromium precatalysts Cr2 and Cr3 showed moderate activity in ethylene oligomerization [TOF = 17,900–29,200 mol (ethylene)·mol (Cr)−1·h−1 at 80 °C] with Schultz-Flory distribution of oligomers (K = 0.54–0.66) and production of polymer varying from 2.8 to 6.7 wt.%. On the other hand, under identical oligomerization conditions, Cr1 /MAO behaved as a polymerization catalyst generating predominantly polyethylene (63.7 wt%). The amount of 1-butene is the largest component in the liquid fraction suggesting that these precatalysts operate via a Cossee-Arlman mechanism. The catalytic activities, selectivity and product distribution are quite sensitive to the R-group at the 3- and 5-position of the pyrazolyl ring. Based on the electronic and steric effects of R- substituents, it is possible to stablish a trend of activity: Cr2 (PzMe2) > Cr3 (PzPh) > Cr1 (Pz). Moreover, the effect of oligomerization parameters (cocatalyst, temperature, [Al]/[Cr] molar ratio, time) on the activity and on the product distribution were examined.  相似文献   

16.
Three substituted salicylaldimine ligands ( 1a, 2a, 3a ) and their titanium complexes bis[N‐(5‐nitrosalicylidene)‐2,6‐diisopropylanilinato]titanium(IV)dichloride ( 1 ), bis[N‐(5‐chlorosalicylidene)‐2,6‐diisopropylanilinato]titanium(IV)dichloride ( 2 ) and bis[N‐(5‐bromosalicylidene)‐2,6‐diisopropylanilinato]titanium(IV)dichloride ( 3 ) were synthesized and characterized by mass spectra, 1H NMR and elemental analyses, as well as complex 1 by X‐ray structure analysis. In the presence of methylaluminoxane (MAO), 1, 2 and 3 are efficient catalysts for ethylene polymerization in toluene. Under the conditions of T = 60 °C, p = 0.2 MPa, and n(MAO)/n(cat) = 1500, the activities of 1–3 reached 4.55–8.80 × 106 g of PE (mol of Ti h bar)?1, which is much higher than that of the unsubstituted complex bis[N‐(salicylidene)‐2,6‐diisopropylanilinato]titanium(IV)dichloride ( 4 ). The viscosity‐average molecular weight of polyethylene ranged from 24.8 × 104 to 44.9 × 104 g/mol for 1–3 and the molecular weight distribution Mw/Mn from 1.85 to 2.34. The effects of reaction conditions on the polymerization were examined in detail. The increase in ethylene pressure and rise in polymerization temperature are favorable for 1–3 /MAO to rise the catalytic activity and the molecular weight of polyethylene. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
An annealing process has been applied to three samples of vinyl alcohol–ethylene (VAE) copolymers, richer in the former comonomer. The effect of such a process on the structure and on the relaxation mechanisms is studied. The structure of the three VAE copolymers has changed slightly. Nevertheless, the viscoelastic relaxation processes have been significantly affected for the thermal treatment. Two additional relaxations have appeared: one of them at temperatures above the relaxation associated to the glass transition, and the other at temperatures below the β mechanism of these copolymers. The temperature location, intensity, and apparent activation energy of the distinct relaxations found are discussed and compared with those in the original copolymers and the homopolymers, poly(vinyl alcohol) and polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1–12, 2001  相似文献   

18.
The condensation reaction of the enolate of methyl acetate with formaldimine to afford a β-lactam was studied using the MP2-FC/6-31+G* level of theory taking into account the electrostatic effect of the solvent by means of a self-consistent reaction field continuum model. The reaction is a stepwise process with three main steps: the formation of the C3(SINGLE BOND)C4 bond, the closure of the β-lactam ring, and the elimination of the methoxide ion. The formation of the C3(SINGLE BOND)C4 bond is rate determining and according to our calculations is not a reversible step. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1826–1833, 1998  相似文献   

19.
The unprecedented observation of odd carbon number olefins is reported during nickel- catalyzed ethylene oligomerization. Two complexes based on Co (II) and Ni (II) with novel tetradentate heteroscorpionate ligand have been synthesized and fully characterized. These complexes showed the ability to oligomerize ethylene upon activation with various organoaluminum compounds (Et2AlCl, Et3Al2Cl3, EtAlCl2, MMAO). Ni (II) based catalytic systems were sufficiently more active (up to 1900 kg·mol (Ni)−1·h−1·atm−1) than Co (II) analogs and have been found to be strongly dependent on the activator composition. The use of PPh3 as an additive to catalytic systems resulted in the increase of activity up to 4,150 kg·mol (Ni)−1·h−1·atm−1 and in the alteration of selectivity. All Ni (II) based systems activated with EtAlCl2 produce up to 5 mol. % of odd carbon number olefins; two probable mechanisms for their formation are suggested – metathesis and β-alkyl elimination.  相似文献   

20.
A series of bis(phenoxy‐imine) zirconium complexes bearing bulky o‐bis(aryl)methyl‐substituted aryl groups on the aniline moiety have been synthesized, characterized and tested as catalyst precursors for ethylene polymerization. 1H NMR spectroscopy suggests that these complexes exist as a single chiral C2‐symmetric isomer in the solution. X‐ray crystallographic analysis of the resulting biszwitterionic‐type adduct complex C1 · 2HCl reveals that the phenoxy‐imine groups function as a monodentate phenoxy ligand and the oxygen atoms are oriented trans to each other at the central metal atom. Using modified methylaluminoxane (MMAO) as co‐catalyst, C1 · 2HCl, C2–C6 exclusively produce linear aluminium‐terminated polyethylenes (Al‐PEs) with high activity (up to 16.89 × 106 g PE (mol Zr h)?1, suggesting that chain transfer to aluminum is the predominant termination mechanism. It is noteworthy that the introduction of an excessively bulky o‐bis(aryl)methyl substituent adjacent to the imine‐N produces low molecular‐weight Al‐PEs (Mv 1.6–10.1 × 103) due to the enhanced rate of chain transfer to alkylaluminium groups during polymerization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号