首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four‐coordinate ruthenium phosphonium alkylidenes 1‐Cy and 1‐iPr , differing in the substituent on the phosphorus center, were observed to decompose thermally in the presence of 1,1‐dichloroethylene to produce [H3CPR3][Cl]. The major ruthenium‐containing product was a trichloro‐bridged ruthenium dimer that incorporates the elements of the 1,1‐dichloroethylene as a dichlorocarbene ligand and a styrenic vinyl group on the supporting NHC ligand. Spectroscopic, kinetic, and deuterium‐labeling experiments probed the mechanism of this process, which involves a rate‐limiting C–H activation of an NHC mesityl ortho methyl group. These studies provide insight into intrinsic decomposition processes of active Grubbs type olefin metathesis catalysts, pointing the way to new catalyst design directions.  相似文献   

2.
张会竹  侯玉蓉  王鑫源  刘桂艳 《应用化学》2018,35(12):1457-1461
为了得到稳定性更好、活性更高的烯烃复分解催化剂,本文采用有机合成的方法,以钌卡宾烯烃复分解催化剂为主体,用锌卟啉进行修饰,得到锌卟啉修饰的Grubbs-Hoveyda型双核钌卡宾烯烃复分解反应催化剂,产物结构使用核磁共振方法进行表征。 用0.1%化学计量催化剂催化几种代表性底物闭环复分解(RCM)反应产率能达到95%,对于特定的交叉烯烃复分解反应(CM),延长反应时间也能得到93%的较高产率。 研究结果为Grubbs-Hoveyda催化剂的修饰提供了新方法和理论依据。  相似文献   

3.
4.
Olefin cross metathesis is a particularly powerful transformation that has been exploited extensively for the formation of complex products. Until recently, however, constructing Z‐olefins using this methodology was not possible. With the discovery and development of three families of ruthenium‐based Z‐selective catalysts, the formation of Z‐olefins using metathesis is now not only possible but becoming increasingly prevalent in the literature. In particular, ruthenium complexes containing cyclometalated NHC architectures developed in our group have been shown to catalyze various cross metathesis reactions with high activity and, in most cases, near perfect selectivity for the Z‐isomer. The types of cross metathesis reactions investigated thus far are presented here and explored in depth.  相似文献   

5.
Use of a tandem ring‐opening–ring‐closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7‐substituted norbornenes and subsequent ring‐closing metathesis forming a thermodynamically stable 6‐membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs’ catalysts. Hydroxy functionalized Grubbs’ first‐ as well as third‐generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex.  相似文献   

6.
In this study, a new pyridinium‐tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin‐metathesis pre‐catalyst for applications under batch and continuous‐flow conditions. The involvement of an oxazine–benzylidene ligand allowed the reactivity of the formed Ru pre‐catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre‐catalyst in good yield. Excellent activities in ring‐closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre‐catalyst. When this powerful pre‐catalyst was immobilized onto a silica‐based cationic‐exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed‐bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.  相似文献   

7.
8.
Retained : An N‐heterocyclic carbene with eight cyclohexyl groups (see figure) provides increased electron density for a highly active olefin metathesis catalyst as well as sufficient steric bulk to allow the efficient separation of such a complex from the organic products in the solvent‐resistant nanofiltration.

  相似文献   


9.
Summary: Following the discovery of bimetallic ruthenium scaffold ( 1 ), two new homobimetallic ruthenium-N-heterocyclic carbene complexes ( 2 , 3 ) were synthesized and found highly suitable for promoting ROMP, RCM, and CM reactions. Results from this study indicated that the ethylene ligand was highly labile and that adding a small amount of a terminal alkyne to the reaction media had a beneficial influence on the metathetical activity. These observations prompted us to further investigate the role of the alkyne co-catalyst. Thus, homobimetallic ruthenium-arene complexes bearing vinylidene ( 4 , 5 ), allenylidene ( 6 ), and indenylidene ( 7 ) ligands were prepared from complex 1 and propargyl alcohol derivatives. Their catalytic activities were probed in several types of olefin metathesis reactions, and they were found valuable intermediates for the safe and efficient one-pot synthesis of the Hoveya–Grubbs isopropoxybenzylidene catalyst ( 8 ).  相似文献   

10.
A ruthenium carbene complex containing a Zn‐porphyrin ligand has been developed. The complex was characterized by 1H NMR, IR, HRMS and elemental analysis. The catalytic activity of the ruthenium carbene complex for olefin metathesis reactions was also investigated. The complex exhibited excellent performance for both ring‐closing and cross metathesis reactions at 35°C.  相似文献   

11.
12.
Cyclic Ru‐phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring‐closing metathesis (RCM), enyne and cross‐metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring‐opening metathesis polymeriyation (ROMP) of this monomer.  相似文献   

13.
A modular and flexible strategy towards the synthesis of N-heterocyclic carbene (NHC) ligands bearing Brønsted base tags has been proposed and then adopted in the preparation of two tagged NHC ligands bearing rests of isonicotinic and 4-(dimethylamino)benzoic acids. Such tagged NHC ligands represent an attractive starting point for the synthesis of olefin metathesis ruthenium catalysts tagged in non-dissociating ligands. The influence of the Brønsted basic tags on the activity of such obtained olefin metathesis catalysts has been studied.  相似文献   

14.
We synthesized Mo(NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)Cl (TPPO = 2,3,5,6‐tetraphenylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(TTBTO )(PP hMe2)Cl (TTBTO = 2,6‐di(3′,5′‐di‐tert‐butylphenyl)phenoxide), and Mo(NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)(CF 3Pyr) (CF 3Pyr = 3,4‐bistrifluoromethylpyrrolide), in order to evaluate them as catalysts for the homocoupling of 3‐methyl‐1‐butene. They were compared with Mo(NC 6F5)(CHCM e2Ph)(HMTO )(PP hMe2)Cl (HMTO = 2,6‐dimesitylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(HIPTO )(PP hMe2)Cl (HIPTO = 2,6‐di(2′,4′,6′‐triisopropylphenyl)phenoxide), and several other Mo and Ru catalysts. In the best cases turnover numbers (TON s) of 400 – 700 were observed for the homocoupling of 3‐methyl‐1‐butene in a closed vessel (ethylene not removed).  相似文献   

15.
Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ‐donating N‐heterocyclic carbene ligands with weak σ‐donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well‐defined silica‐supported catalysts, [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)+][B(ArF)4?] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazol‐2‐ylidene, B(ArF)4=B(3,5‐(CF3)2C6H3)4] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.  相似文献   

16.
A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X‐ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring‐closing and ring‐opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation.  相似文献   

17.
A Grubbs‐Hoveyda pre‐catalyst having a trimeric resting state based on 2,4,6‐trichloro‐1,3,5‐triazine was synthesized and the complex was characterized by NMR, HRMS and elemental analysis. The activity of this complex for ring‐closing metathesis (RCM) was investigated. The catalytic system possesses high catalytic activity for many different olefin substrates.  相似文献   

18.
19.
In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica‐based mesoporous (i.e., MCM‐41, MCM‐48, and SBA‐15) and microporous (ZSM‐5 and MWW) versus macroporous materials (D11‐10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such “linker‐free” supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis‐cyclooctene to form 1,9‐cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex.  相似文献   

20.
A large-scale synthesis of known Ru olefin metathesis catalyst VII featuring an unsymmetrical N-heterocyclic carbene (NHC) ligand with one 2,5-diisopropylphenyl (DIPP) and one thiophenylmethylene N-substituent is reported. The optimised procedure does not require column chromatography in any step and allows for preparation of up to 0.5 kg batches of the catalyst from simple precursors. The application profile of the obtained catalyst was studied in environmentally friendly dimethyl carbonate (DMC). Although VII exhibited low efficiency in cross-metathesis (CM) with electron-deficient partners, good to excellent results were noted for substrates featuring easy to isomerise C−C double bonds. This includes polyfunctional substrates of medicinal chemistry interest, such as analogues of psychoactive 5F-PB-22 and NM-2201 and two PDE5 inhibitors—Sildenafil and Vardenafil. Finally, a larger scale ring-closing metathesis (RCM) of a Vardenafil derivative was conducted in DMC, allowing for straightforward isolation of the expected product (23 g) in high yield and with low Ru contamination level (7.7 ppm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号