首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel super acidic magnetic nanoparticle as catalyst was successfully synthesized. The preparation of this dendrimer sulfonic acid functionalized γ‐Fe2O3 magnetic core‐shell silica nanoparticles as a new recoverable and heterogeneous nanocatalyst was described. The new catalyst was characterized using various techniques such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and thermo gravimetric synthesis (TGA). Moreover, we have examined the catalytic activity of the catalyst for one‐pot, efficient and facile synthesis of 2‐hydroxy‐1,4‐naphthoquinone derivatives via a three‐component condensation reaction of 2‐hydroxynaphthalene‐1,4‐dione, aromatic aldehydes and aniline derivatives. High yields of products, short reaction times, waste‐free, mild, ambient and solvent‐free reaction conditions are advantages of this protocol. Also, the catalyst can be easily recovered by an external magnetic and reused several times without significant loss of its catalytic activity.  相似文献   

2.
The catalytic activity of l ‐arginine‐coated nano‐Fe3O4 particles (Fe3O4@l ‐arginine) proves they are a novel magnetic catalyst without the use of heat and reflux for the synthesis of 1,3‐diaryl‐2‐N‐azaphenalene derivatives and n‐acyl‐1,3‐diaryl‐2‐N‐azaphenylene derivatives in a one‐pot pseudo‐five‐component condensation reaction of compounds of 2,7‐naphthalene diol, aldehydes, and ammonia derivatives (ammonium acetate or ammonium hydrogen phosphate) and solvent (water and alcohol) with high yield and short reaction times, economical, and simple workup. The structure and magnetic properties of the obtained nanoparticles were characterized via Fourier transform infrared spectroscopy (IR) and field emission scanning electron microscopy (FE‐SEM). The results demonstrated that the average size of the synthesized magnetite nanoparticles is about 21 nm. In addition, the heterogeneous catalyst can be easily recovered magnetically and can be reused for further runs without significant loss of its catalytic activity.  相似文献   

3.
An efficient approach for the synthesis of 10 novel pyrazole‐based 1,2,4‐triazolidin‐3‐one derivatives catalyzed by ZnO‐loaded ZrO2 as heterogeneous catalyst with ethanol as solvent is described. The structure of the mixed metal oxide catalyst was characterized by various instrumental techniques (scanning electron microscopy, transmission electron microscopy, X‐ray diffraction and Brunauer–Emmett–Teller). In smooth reactions, products were accomplished in excellent yields (90–94%) with short reaction times (≈ 45 min). ZnO/ZrO2 catalyst exhibited good recyclability. The catalyst is reused six times without any noticeable loss of activity. The major advantages of this method are operational simplicity, mild conditions, simple work‐up procedure and broad functional group tolerance.  相似文献   

4.
Piperazine‐functionalized nickel ferrite (NiFe2O4) nanoparticles were synthesized as recoverable heterogeneous base catalysts using a routine method. The synthesized materials were characterized using various spectroscopic techniques such as infrared, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetry analysis, and vibrating sample magnetometry. Catalytic efficiency was investigated in the synthesis of 2‐amino‐4H‐chromene derivatives via a one‐pot three component reaction of aldehyde and malononitrile with β or α‐naphthol/5‐methyle resorcinol under solvent‐free conditions with good to high yields. This method is operationally simple and has several advantages such as good to high yield, short reaction times, solvent‐free conditions, and easy synthesis. Moreover, the catalyst was recovered easily using an external magnet and reused three times without distinctive loss in catalytic activity.  相似文献   

5.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

6.
Titanium was incorporated in ionic liquid based periodic mesoporous organosilica to prepare a nanostructured catalyst (Ti@PMO‐IL) with high activity. Procedure for the synthesis of Ti@PMO‐IL was followed according the simultaneous hydrolysis and condensation of alkylimidazolium ionic liquid, tetramethoxysilane (TMOS) and tetrabutylorthotitanate (TBOT) where a surfactant template was used together with a simple acid‐based catalytic aproach. N2 adsorption isotherm of the Ti@PMO‐IL was studied to measure its mean pore volume, pore size distribution and specific surface area. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was applied to identify the chemical bonds present in Ti@PMO‐IL. The morphology of this nanomaterial was investigated by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) image was used to study mesoporosity and structure order of the catalyst. The catalytic activity of Ti@PMO‐IL was then studied and found to be efficient and reusable to catalyze Hantzsch reaction.  相似文献   

7.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

8.
Efficient and recyclable novel nano tetra‐2,3‐pyridiniumporphyrazinato‐oxo‐vanadium tricyanomethanide, {[VO(TPPA)][C(CN)3]4}, as a vanadium surface‐free phthalocyanine‐based molten salt catalyst was successfully designed, produced and used for the Strecker synthesis of α‐aminonitrile derivatives through a one‐pot three‐component reaction between aromatic aldehydes, trimethylsilyl cyanide and aniline derivatives under neat conditions at 50 °C. This catalyst was well characterized using Fourier transform infrared, UV–visible, X‐ray photoelectron and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, scanning and high‐resolution transmission electron microscopies, inductively coupled plasma mass spectrometry and thermogravimetric analysis. The catalyst can be simply recovered and reused several times without significant loss of catalytic activity.  相似文献   

9.
An immobilized Co (II) Schiff base complex supported on multi‐wall carbon nanotubes was synthesized and characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy , thermogravimetric analysis and inductively coupled plasma mass spectrometry. It was shown that the supported complex is a facile, eco‐friendly, recyclable, reusable and green catalyst for three‐component condensation of 2‐naphthol and acetamide with various aldehydes for the synthesis of 1‐amidoalkyl‐2‐naphthol derivatives under solvent‐free conditions. Also, in a further study, the catalytic application was studied in the synthesis of tetrahydrobenzo[b ]pyran derivatives via the condensation reaction of malononitrile and dimedone with several aromatic aldehydes. The procedures suggested here for the synthesis of 1‐amidoalkyl‐2‐naphthol and tetrahydrobenzo[b ]pyran derivatives offer several advantages, such as stability, recyclability and eco‐friendliness of the catalyst, simple experimental conditions, short reaction times, high to excellent yields and easy work‐up.  相似文献   

10.
A simple, efficient and environmentally benign route was developed for the preparation of spiro(indoline‐3,4‐pyrano[2,3‐c ]pyrazole) derivatives with good yields from condensation of isatins, malononitrile (or ethyl cyanoacetate), hydrazine hydrate and ethyl acetoacetate catalysed by PFu@Fe3O4 nanocomposite. The use of easily available catalyst, shorter reaction times, better yields, simplicity of reaction, heterogeneous system and easy work‐up are the advantages of the method presented. Characterization of the catalyst was performed using Fourier transform infrared spectroscopy, X‐ray diffraction and transmission electron microscopy.  相似文献   

11.
A simple and convenient protocol was established for the synthesis of the N‐benzyl‐N‐arylcyanamides through N‐benzylation of a wide variety of arylcyanamides using copper nanoparticles immobilized on natural zirconium silicate as a novel and green heterogeneous catalyst. In this study, we showed a novel, cost efficient, convenient and simple method for green synthesis of Cu/zirconium silicate nanocomposite by using Rubia tinctorum leaf extract as capping and reducing agent. The structure of the novel catalyst was successfully characterized using a number of micro/spectroscopic techniques such as XRD, FESEM, BET, EDS, TEM, FT‐IR and elemental mapping. TEM micrographs of obtaining biocatalyst revealed mostly spherical particles with an average diameter of about 15–25 nm on the surface of natural support. The prepared catalyst was used in the N‐benzylation of a variety of arylcyanamides with benzyl bromide and showed high activity and stability for the efficient synthesis of N‐benzylarylcyanamides in good yields. Remarkably, the catalyst can be easily recovered from the reaction medium and reused up to five runs without losing its catalytic activity.  相似文献   

12.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

13.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

14.
In this paper, a novel catalyst is introduced based on the immobilization of palladium on modified magnetic graphene oxide nanoparticles. The catalyst is characterized by several methods, including transmission electron microscopy, scanning electron microscopy, X‐ray fluorescence, vibrating‐sample magnetometer, Fourier transform‐infrared and dynamic light scattering (DLS) analysis. The activity of the catalyst was investigated in the synthesis of 4(3H)‐quinazolinones via Pd‐catalyzed carbonylation‐cyclization of N‐(2‐bromoaryl) benzimidamides by Mo (CO)6. The Mo (CO)6 is used as a carbon monoxide source for performing the reaction under mild conditions. The catalyst showed good reusability, and no change in activity was observed after 10 cycles of recovery.  相似文献   

15.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

16.
The sulfonated palladium(II) N‐heterocyclic carbene complex PdII(NHC)SO3?, supported on poly(4‐vinylpyridinium chloride), was used as a heterogeneous, recyclable and active catalyst for the Suzuki–Miyaura reaction. This catalyst was applied for coupling of various aryl halides with phenylboronic acid and the corresponding products were obtained in excellent yields and short reaction times. The catalyst was characterized using Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, scanning electron microscopy and elemental analysis. After each reaction, the catalyst was recovered easily by simple filtration and reused several times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst.  相似文献   

18.
In this research, a novel organic–inorganic hybrid salt, namely, N1,N1,N2,N2‐tetramethyl‐N1,N2‐bis(sulfo)ethane‐1,2‐diaminium tetrachloroferrate ([TMBSED][FeCl4]2) was prepared and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping, field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), thermal gravimetric (TG), differential thermal gravimetric (DTG), and vibrating‐sample magnetometry (VSM) analyses. Catalytic activity of the hybrid salt was tested for the synthesis of N,N′‐alkylidene bisamides through the reaction of benzamide (2 eq.) and aromatic aldehydes (1 eq.) under solvent‐free conditions in which the products were obtained in high yields and short reaction times. The catalyst was superior to many of the reported catalysts in terms of two or more of these factors: the reaction medium and temperature, yield, time, and turnover frequency (TOF). [TMBSED][FeCl4]2 is a Brønsted–Lewis acidic catalyst; there are two SO3H groups (as Brønsted acidic sites) and two tetrachloroferrate anions (as Lewis acidic sites) in its structure. Highly effectiveness of the catalyst for the synthesis of N,N′‐alkylidene bisamides can be attributed to synergy of the Brønsted and Lewis acids and also possessing two sites of each acid.  相似文献   

19.
An efficient and simple method developed for the synthesis of 6‐methyl‐1,2,3,4‐tetrahydro‐N‐aryl‐2‐oxo/thio‐4‐arylpyrimidine‐5‐carboxamide derivatives ( 4a‐o ) using UO2(NO3)2.6H2O catalyst under conventional and ultrasonic conditions. The ultrasound irradiation synthesis had shown several advantages such as milder conditions, shorter reaction times and higher yields. The structures of all the newly synthesized compounds have been confirmed by FT‐IR, 1H NMR, 13C NMR and mass spectra.  相似文献   

20.
New Schiff base (SB) functionalized graphene oxide (GO) nanosheets containing phosphomolybdic counter‐anion H2PMo12O40¯ (H2PMo) were successfully prepared by grafting of 3‐aminopropyltriethoxysilane (APTS) on GO nanosheets followed by condensation with benzil and finally reaction with phosphomolybdic acid (H3PMo12O40, denoted as H3PMo) and characterized using Fourier transform infrared (FT‐IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), particle size distribution, energy‐dispersive X‐ray (EDX) analysis, EDX elemental mapping, and inductively coupled plasma optical emission spectrometry (ICP‐OES). The prepared new nanomaterial, denoted as GO‐SB‐H2PMo, was shown to be an efficient heterogeneous catalyst in one‐pot, three‐component reaction of β‐naphthol, aldehydes, and dimedone, giving high yields of tetrahydrobenzo[a]xanthene‐11‐ones within short reaction times. The catalyst is readily recovered by simple filtration and can be recycled and reused several times with no significant loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号