首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from–40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1–x–y As/InP material system [1] instead of the conventional Ga x In1–x As y P1–y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1–x–y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].  相似文献   

2.
The generalized susceptibility, χ(q), in Pd and Pt for q along the [100], [110], [111], and [120] directions was determined from their APW and RAPW energy band structures, respectively, using the analytic tetrahedron linear energy scheme of Rath and Freeman. The band structures were previously found to yield Fermi surface radii, temperature dependencies of the static magnetic susceptibility, χ(T), resistivity, and a spin lattice relaxation, T1T, in very good agreement with experiment. In the χ(q) calculations, we used 2048 tetrahedra in 1/48th irreducible BZ and the energy eigenvalues for bands 4, 5, and 6 which cross the Fermi energy as fitted to a Fourier series representation. The intraband parts of χ(q) at q = 0 for both metals are found to agree with the density of states at the Fermi energy to without 0.5%. Our results show that the dominant contribution to χintra arises from the dominant band 5 whose “jungle-gym” FS has strong nesting features; the main peak for Pd occurs at the same q value (= 0.65π/a) for q along the [0q0], [q, q, 0], and [q, q, q] directions. The locus of this main peak is a square in the (0, 0, 1) plane. The maximum of χintra for q along the [110] and [111] directions are 23% and 13%, respectively, higher than the value of χ(q) at q = 0. For q along the [010] and [120] directions, the peak is, however, lower than the value of χintra at q = 0. Hence, while phonon anomalies are predicted for the [110] and [111] directions, no anomaly is predicted for either the [100] or [120] direction. The predicted q value for the [110] anomaly, q = 0.65π/a is close to the experimental value of ~0.7 π/a. Although there may be a hint of an anomaly at 0.56 [111] in the measurements, a more detailed investigation of this region is called for. For platinum, χintra for q along the [010], [110] and [111] directions has main peaks which occur at q = 0.68 π/a, 0.75 π/a, and 0.85 π/a, respectively. Here too, this main peak comes from the nesting of the jungle-gym Fermi surface which is not, however, as flat as that of palladium. Anomalies are predicted (although weaker in Pt than in Pd) along [110] and [111] but not along [100] and [120]. The [110] anomaly is close to the measured q value (~0.7–0.8 π/a). Also in agreement with experiment, we predict a weaker [110] anomaly for Pt than for Pd. In both Pd and Pt, weaker anomalies are predicted for the [111] direction than for the [110] direction.  相似文献   

3.
4.
杜宝勋 《发光学报》2000,21(3):179-281
分析了单量子阱(SQW)、多量子阱(MQW)和分别限制异质结构量子阱(SCH-SQW)半导体激光器的阈值.求出了表示光增益随注入载流子密度变化的方程.利用这个结果,得到了上述三种量子阱半导体激光器的阈值电流密度的表达式.  相似文献   

5.
1lntroductionCarhan,aIVcolutnnelement,hasmanyadvantagesinGaAsAlGaAsmaterials,suchasIowdiffudricoefficient,relativelowactivateenergyabout26meV,highincmptiOnconcentratboandhighm0bilityduetothelowcomensaterate.SocarbonhasbeenwidelyusedinGaAsAlGaAsheter0unctionbipoartransistors(HBT),modulationdoPingfieldeffecttransistors(m),tunneldiodes,iInPurityinducedlayerdisorderinglaserdiodeS,anddistributedBraggreflectors(DBRs)intheverticalcavitysurfaceedrittinglasers(VCSEL).Ingeneral,therearesever…  相似文献   

6.
By low-pressure metalorganic chemical vapor deposition (LP-MOCVD) system,InGaAs/AlGaAs graded-index separate-confinement heterostructure strained quantum well lasers are grown with carbon doped the upper cladding layer and the capping layer. Carbon tetracholride (CCl4) is used as the carbon source. 100 μm oxide stripe lasers are fabricated,and the laser output power per facet (uncoated) reaches 1.2 W with 2A injection current under the room temperature continuous wave (CW) operation. The threshold current density is 150 A/cm2 with 1000 μm cavity length. The slope efficiency per facet reaches 0.53W/A,and the total external differential quantum efficiency is above 85%. The relations between the threshold current densities,the differential quantum efficiency and the cavity length are studied.  相似文献   

7.
InGaAsP/InGaP/GaAs单量子阱激光器工作特性   总被引:1,自引:0,他引:1       下载免费PDF全文
刘育梅  王立军 《发光学报》1998,19(2):105-108
利用低压-金属有机化学汽相沉积(LP-MOCVD)方法研制出InGaAsP/InGaP/GaAs单量子阱大功率激光器并分析了阈值电流密度、特征温度和外微分量子效率与腔长的关系.  相似文献   

8.
An analytical, visual and open source model based on solving the rate equations for InGaN/GaN single quantum well (QW) lasers has been carried out. In the numerical computations, the fourth-order Runge–Kutta method has been used for solving the differential rate equations. The rate equations which have been considered in this simulation include the two level rate equations for the well and separate confinement heterostructure (SCH) layers. We present a new and inexpensive modeling method with analytical, visual and open source capabilities to investigate and comprehend the QW laser characteristics such as time behavior of carriers in SCHs and QW, photon density, output power and gain, and also the output power versus current which presents the threshold current of the laser. The characteristics of the QW lasers, which include laser time response (Pt), turn-on delay time of lasing and output power–current (PI) characteristic and related features such as threshold current and slope efficiency have been investigated. Our model accurately computes the Pt and PI characteristics such as turn-on delay time, threshold current and slope efficiency, and also illustrates the effects of parameters such as the injection current and geometry.  相似文献   

9.
In this paper, we report electron momentum density of Ni2TiAl alloy using an in-house 20 Ci 137Cs (661.65 keV) Compton spectrometer. The experimental data have been analyzed in terms of energy bands and density of states computed using linear combination of atomic orbitals (LCAO) method. In the LCAO computations, we have considered local density approximation, generalized gradient approximation and recently developed second order generalized gradient approximation within the frame work of density functional theory. Anisotropies in theoretical Compton profiles along [1 0 0], [1 1 0] and [1 1 1] directions are also explained in terms of energy bands.  相似文献   

10.
Analysis is performed for valence band structures and some characteristics of InGaAs/InGaAsP strain-compensated quantum well lasers lattice-matched to InP substrate. The computed results show that band offsets are functions of strain compensation instead of constants; strain compensation changes the band structures and the density of states, and hence affects the optical gain and the threshold current density. Under the condition of zero net strain, the values of the well width, cavity length and relative threshold carrier density and threshold current density are determined for realization of 1.55 m wavelength emission.  相似文献   

11.
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.  相似文献   

12.
测量了Dy(Fe0.8Al0.2)2单晶体在[100],[110]和[111]方向上的退磁曲线、内禀矫顽力和磁黏滞性系数随温度的变化.认为退磁曲线出现台阶和大跳跃、内禀矫顽力随温度变化存在峰值、磁黏滞性系数与温度无关等都是畴壁隧穿能垒的宏观量子效应的反映.实验上得出由经典热激活到量子隧穿的交界温度约为5.5K. 关键词:  相似文献   

13.
SCOPE OF REVIEW

This paper reviews the coupling of resonant laser ionization and laserexcited fluorescence with mass spectrometry to make difficult isotopic-ratio measurements. To keep this review focused and manageable in size, it covers only metal and noble-gas isotopic analyses that find applications in isotope geochemistry and cosmochemisty. Many research groups are applying lasers and mass spectrometry to atomic, molecular, and isotopic analyses that address problems in nuclear physics [1], materials science [2-4], biology [5,6], environmental science, and other areas of geochemistry and cosmochemistry [7,8]. Several previous reviews and monographs cover the basic principles and instrumentation of resonant laser processes and mass spectrometry in more breadth [9-12]. The latest Analytical Chemistry Fundamental Reviews [13] and the published proceedings of the biannual International Symposium on Resonance Ionization Spectroscopy and Its Applications provide updates of other recent work [8]. This review does not comprehensively encompass the use of lasers for analyte sampling by desoxption, ablation, sputtering, or melting. Several other specific reviews discuss laser sampling in elemental [14,15] and stable-isotope analyses [16,17]. This review does include applications in which pulsed ion sputtering and laser desoxption atomize analytes for ionization by resonance ionization mass spectrometry (RIMS). This review also does not include isotopic-analytical methcds that use solely optical spectroscopy. The continuing development of laser and plasma technology is leading to promising spectroscopic-only methods for stable-isotope analysis [18-21].  相似文献   

14.
The effects of carrier transport on turn-on delay time in multiple quantum well lasers were investigated both theoretically and experimentally. By using rate equation analysis with two components of the carrier density inside and outside of the quantum wells, we found that carrier transport caused two important effects: one is the stationary effect of a significant reduction in carrier density in quantum wells; the other is an increase in differential carrier lifetime.As an experimental investigation, compressively strained 1.3 m GalnAsP/InP multiple quantum well (MQW) lasers were fabricated and their turn-on delay times were measured and investigated. The short-cavity buried-heterostructure lasers showed low-threshold current (2 to 3 mA) and small turn-on delay time (<200 ps) at biasless 30 mA pulse current. Although these performances are suitable for high-speed digital transmission, it was found that the carrier lifetimes derived from the turn-on delay measurement were larger for strained quantum well lasers than for conventional quantum well lasers and double heterostructure lasers. These phenomena are explained using the carrier transport model and are discussed. The solutions for further reduction in carrier lifetime and turn-on delay are discussed.  相似文献   

15.
We present a systematic theoretical study, based on the Kane–Weiler 8×8 k·p model, of the linear Zeeman splitting introduced by the interaction between the angular momentum and the magnetic field which can give a measure of the non-linear Zeeman effect associated with interband coupling and diamagnetic contributions. The conduction and valence bands g-factors are calculated for InSb spherical and semi-spherical quantum dots. The calculations of the g-factors showed an almost linear dependence, for the ground state, on the magnetic field. We have also found that the strong magnetic field dependence as well as the dependence on the dot size of the effective spin splitting can be unambiguously attributed to the strength of the inter-level mixing.  相似文献   

16.
Considering the electric field of incident light along four particular directions [100], [110], [011], and [010], the optical properties of monoclinic MnWO4 were investigated by the first-principle methods. The calculated electronic structures show that the O 2p states and Mn 3d states dominate the top of the valence bands, while the W 5d and Mn 3d states play a key role in the bottom of the conduction bands. The dielectric function and other optical properties, including absorption coefficient, reflectivity spectra, and energy-loss spectra, were calculated and analyzed. The results predicted the maximum static dielectric function when the electric field of incident light was along the [100] direction; meanwhile the absorption edge was calculated to be consistent with the energy band gap and the values and positions of peaks in absorption coefficient are related with the electric field of light. Otherwise, it is found that the appearance of peaks in the energy-loss spectra is also dependent on the electric field and simultaneously corresponds to the edge of absorption spectra and the peaks' position of reflectivity spectra.  相似文献   

17.
We propose the idea of developing THz quantum cascade lasers (QCLs) with GaN-based quantum well (QW) structures with significant advantages over the currently demonstrated THz lasers in the GaAs-based material system. While the ultrafast longitudinal optical (LO) phonon scattering in AlGaN/GaN QWs can be used for the rapid depopulation of the lower laser state, the large LO-phonon energy (∼90 meV) can effectively reduce the thermal population of the lasing states at higher temperatures. Our analysis of one particular structure has shown that a relatively low threshold current density of 832 A/cm2 can provide a threshold optical gain of 50/cm at room temperature. We have also found that the characteristic temperature in this structure is as high as 136 K.  相似文献   

18.
车驰*  柳青峰  马晶  周彦平 《物理学报》2013,62(9):94219-094219
从理论上分析了位移效应对量子点激光器的影响, 并推导了量子点激光器阈值电流相对变化、输出功率相对变化的位移损伤公式. 对量子点激光器进行了中子辐照实验, 观察到了阈值电流的增加. 结合实验结果确定了量子点载流子非辐射复合速率的损伤因子的表达式, 公式计算结果与实验结果符合较好, 证明了模型的正确性. 得到的公式可用于预测量子点激光器在辐射环境下的性能变化, 有着较大实际应用价值. 关键词: 量子点激光器 位移损伤 缺陷  相似文献   

19.
Proton beams with energies of 10 and 200 MeV were irradiated onto InAs quantum dot lasers with a wavelength of 1.3 μm. The increase in threshold current by proton irradiation was small compared with those of the previously reported other quantum dot lasers with larger active region and 1.3-μm InGaAsP quantum well lasers. These results were discussed by taking account of non-ionizing energy loss and effective volume of active region.  相似文献   

20.
Arrays of five InGaAsP/InP single mode junction-defined buried stripe heterostructure lasers are described. The laser arrays were grown on multi-channeled InP substrate by single-step liquid phase epitaxy. The buried double heterostructure and the lateral current confining structure were formed in the same growth process. InGaAsP layer growth is dominated by the preferred orientation, with (1 0 0) growth favored over other directions. As a result of low-temperature single-step growth, the device yield is high. These laser arrays are characterized by output power close to 0.6 W, high quantum efficiency, symmetrical far-field patterns and excellent linearity of the light–current curve. Stable single transverse mode operation obtained up to 600 mW emitted power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号