首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

2.
Free-standing thin sheet form of mesoporous silica materials with perpendicular orientation is a much desired materials for its possible applications in catalysis, mask, and separation. A three component amphiphile system of sodium dodecyl sulfate/hexadecyltrimethylammonium bromide/pluronic-123(C(16)TMAB/SDS/P123) was employed to template the condensation of sodium silicates for the formation of SBA(⊥), a thin sheet of SBA-15 with perpendicular nanochannels. SBA(⊥) can be synthesized at SDS/C(16)TMAB=1.5 and T≥40°C and shows pH-dependent morphology. It has uniform pore size ~9 nm, homogeneous sheet thickness in the range of 60-300 nm and dimension of several microns. We studied in details the structure and morphology of the SBA(⊥) with variation of three experimental parameters: the SDS/C(16)TMAB ratio, the temperature, and the pH condition in the synthetic gel. It is proposed that the mixed surfactants of SDS and C(16)TMAB form catanionic vesicle in which the P123 and silicates are condensed. The balanced interaction of P123/silicate with the narrow confinement under surfactant bi-layers of C(16)TMAB/SDS promoted the formation of perpendicular nanochannels. Low temperature and pH conditions favor stronger segregation of the PPO and PEO-oligosilicate segments in the SBA(⊥) structure which gives the basis of thickness control of the sheet. The control of structure and morphology are discussed with modern theory of microphase separation in block copolymers under confinement.  相似文献   

3.
The factors affecting the electrophoretic separation of DNA bands in DNA base sequencing using fluorescence detection are analyzed. All the factors contributing to DNA band spacing and band width are evaluated; DNA diffusion and thermal effects on gels are the main considerations. The dependence of the gel's electrical resistivity on gel temperature and the variation of temperature over gel thickness are associated with a broadening of DNA band width. As a result of the analyses the maximum separable base number is represented as a function of various electrophoretic variables. The best separations are possible with an electric field strength corresponding to gel thickness. The maximum separable base number increases as the gel thickness decreases. It also increases as the migration distance increases, but it becomes saturated and has an upper limit when the migration distance is long. This upper limit increases as gel thickness decreases. DNA fragments with 600 and 601 bases can be completely separated from each other under optimum conditions for a 0.2 mm thick gel plate. Furthermore, using the band spacing information, under the same conditions, 750 bases could be assigned separately.  相似文献   

4.
The electrophoretic behaviour of the highly basic protein thaumatin was explored in strongly acid (pH 2) and mildly acid (pH 4.5) separation systems using both bare and coated fused silica capillaries. The separation selectivity for thaumatin I, thaumatin II, and for other sample constituents was insufficient for their baseline separation at pH 2 in an uncoated capillary because the separation efficiency was markedly lower than is common in the electrophoretic separations of proteins. A separation selectivity higher by up to one order of magnitude has been reached at pH 4.5. A pronounced asymmetry of zones, which impaired resolution at this pH, was effectively suppressed by coating of the capillary wall with a polymer. In fact, adsorption on the capillary coating always plays a contributory role whenever a good separation of thaumatin constituents is attained. This indicates that electrochromatographic separation systems based on capillaries coated with the layer of either cationic or hydrophilic uncharged polymer hold promise for the development of methods for thaumatin analysis.  相似文献   

5.
《Electrophoresis》2017,38(13-14):1724-1729
We have recently demonstrated the separation of neutral and water‐insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers.  相似文献   

6.
Hsu JP  Kuo CC  Ku MH 《Electrophoresis》2008,29(2):348-357
The electrophoresis of a charge-regulated toroid (doughnut-shaped entity) normal to a large disk is investigated under the conditions of low surface potential and weak applied electric field. The system considered is capable of modeling the electrophoretic behavior of various types of biocolloids such as bacterial DNA, plasmid DNA, and anabaenopsis near a perfectly conducting planar wall. The influences of the size of the toroid, the separation distance between the toroid and the disk, the charged conditions on the surfaces of the toroid and the disk, and the thickness of electric double layer on the electrophoretic mobility of the toroid are discussed. The results of numerical simulation reveal that under typical conditions the electrophoretic behavior of the toroid can be different from that of an integrated entity. For instance, if the surface of the toroid carries both acidic and basic functional groups, its mobility may have a local maximum as the thickness of double layer varies. We show that the electrophoretic behavior of the toroid is different, both qualitatively and quantitatively, from that of the corresponding integrated particle (particle without hole).  相似文献   

7.
In this work, a capillary electrophoretic method for the rapid quantitation of atorvastatin (AT) in a lipitor tablet was investigated and developed. Method development included studies of the effect of applied potential, buffer concentration, buffer pH, and hydrodynamic injection time on the electrophoretic separation. The method was validated with regard to linearity, precision, specificity, LOD, and LOQ. The optimum electrophoretic separation conditions were 25 mM sodium acetate buffer at pH 6, with a separation voltage of 25 kV using a 50 microm capillary of 33 cm total length. Sodium diclofenac was used as an internal standard. Analysis of AT in a commercial lipitor tablet by electrophoresis gave quite high efficiency, coupled with an analysis time of less than 1.2 min in comparison to LC. Once the separation was optimized on capillary, it was further miniaturized to a microchip platform, with linear imaging UV detection using microchip electrophoresis (MCE). Linear imaging UV detection allowed for real-time monitoring of the analyte movement on chip, so that the optimum separation time could be easily determined. This microchip electrophoretic method was compared to the CE method with regard to speed, efficiency, precision, and LOD. This work represents the most rapid and first reported analysis of AT using MCE.  相似文献   

8.
We have performed Monte Carlo simulations to study the effect of cyclic architecture on the behavior of homopolymer chains under several conditions of confinement. The collapse of the rings in two stages, a coil-to-globule and a liquidlike-to-solidlike transition, was observed even at extreme confinement. Both transitions were observed at lower temperatures than for linear chains of the same length, 2%-5% lower for unconfined systems, and 10%-15% lower for wall separations below three bond lengths due to the effect of confinement. When the plates separation approached the two-dimensional regime, the coil-to-globule transition shifted to lower temperatures. The inverse trend was observed when the chain length was increased. In the collapsed state, the average size and conformations of linear and cyclic molecules of same length were similar independently of confinement. At temperatures near the coil-to-globule transition, the radius of gyration of unconfined linear chains, [R(g)(2)](linear), became larger than for the cyclic chains, [R(g)(2)](cyclic), and this difference increased considerably with confinement. The radius of gyration ratio [R(g)(2)](linear)/[R(g)(2)](cyclic) in this region decreased rapidly. The decrease was more pronounced and occurred at lower temperatures for slit width confinements. At higher temperatures, in the coil state, the radius of gyration ratio became nearly constant for a given separation, and varied from 0.56 for unconfined systems to 0.47 when the chain was completely confined between the walls. This reduction was attributed to the higher increase in the average size of linear chains with confinement when compared with cyclic chains, due to architectural restrictions.  相似文献   

9.
CZE was assayed for the separation of carbamate pesticides susceptible to protonation (Pirimicarb, Carbendazim). Different electrophoretic media with high organic contents were explored, adequate separation and resolution being achieved when a BGE based on ACN with acetic acid in the presence of SDS as an ionic additive was used. With a view to increasing the sensitivity of the method, an in-capillary SPE step prior to the electrophoretic separation was developed. We employed a monolithic polymer formed in situ within the capillary as a medium for analyte retention. The synthesized monolithic bed exhibited high porosity and allowed samples to be loaded at flow rates of about 65 microL/min by applying a pressure of 12 bar. A 5-cm length of monolithic sorbent was used to preconcentrate the target analytes from aqueous samples. The analytes retained were eluted from the polymeric phase directly in the separation capillary with the same electrophoretic medium used for their further separation by CZE. For a 15-min preconcentration time, the in-line SPE-CZE approach proposed here permitted the determination of these pesticides in drinking water at a concentration level of 0.1 microg/L, as demanded by current EU legislation.  相似文献   

10.
Microphase separation and morphology of star ABC triblock copolymers confined between two identical parallel walls (symmetric wetting or dewetting) are investigated with self-consistent field theory (SCFT) combined with the "masking" technique to describe the geometric confinement of the films. In particular, we examine the morphology of confined near-symmetric star triblock copolymers under symmetric and asymmetric interactions as a function of the film thickness and the surface field. Under the interplay between the degree of spatial confinement, characterized by the ratio of the film thickness to bulk period, and surface field, the confined star ABC triblock copolymers are found to exhibit a rich phase behavior. In the parameter space we have explored, the thin film morphologies are described by four primary classes including cylinders, perforated lamellae, lamellae, and other complex hybrid structures. Some of them involve novel structures, such as spheres in a continuous matrix and cylinders with alternating helices structure, which are observed to be stable with suitable film thickness and surface field. In particular, complex hybrid network structures in thin films of bulk cylinder-forming star triblock copolymers are found when the natural domain period is not commensurate with the film thickness. Furthermore, a strong surface field is found to be more significant than the spatial confinement on changing the morphology of star triblock copolymers in bulk. These findings provide a guide to designing novel microstructures involving star triblock copolymers via geometric confinement and surface fields.  相似文献   

11.
We report the development of efficient electrophoretic methods for the separation and quantification of L-arginine and six naturally occurring derivatives that are structurally and functionally related. Capillary electrophoresis (CE) employing a concentrated borate buffer at pH 9.4 achieves the separation of mixtures containing dimethyl-L-arginine, NG-monomethyl-L-arginine, L-arginine, L-homoarginine, L-ornithine, and L-citrulline as 4-fluoro-7-nitrobenzofurazan derivatives. In addition, the separation of the isomeric dimethyl-L-arginine derivatives (symmetric and asymmetric) is attained with baseline resolution by micellar electrokinetic chromatography (MEKC) when a high concentration of deoxycholic acid is added as a surfactant to the same running buffer. The influence of buffer type, concentration, and pH on the separation was studied to optimize separation conditions. The limit of quantitation (LOQ) for asymmetric dimethyl-L-arginine in aqueous solution was determined to be 20 microM using UV absorption in a CE separation and 0.1 microM using laser induced fluorescence (LIF) detection in an MEKC separation. This newly developed method was successfully applied for the quantitation of asymmetric dimethyl-L-arginine and L-arginine in human plasma samples at levels that might be used as a clinical diagnostic for cardiovascular disease (0.125 microM LOQ).  相似文献   

12.
Cylindrical and parallel‐plate electrophoretic separations for the removal of ions and sub‐23 nm particles were compared in this study. First, COMSOL Multiphysics® software was utilized to simulate the ion and particle trajectories inside both electrophoretic separations. The results show that ions and sub‐23 nm particles are removed simultaneously and that all particles can pass through both electrophoretic separations smoothly at a trap voltage of 25 V. The experimental results show that ion losses become smaller with increasing ion flow rates, and ion losses of the cylindrical and parallel‐plate electrophoretic separations range from 56.2 to 71.6% and from 43.8 to 59.6%, respectively, at ion flow rates ranging from 1–3 L/min. For the removal of ions and sub‐23 nm particles, the collection efficiency of both electrophoretic separations can reach 100%, but the parallel‐plate electrophoretic separation requires a lower trap voltage. The particle loss of the parallel‐plate electrophoretic separation is under approximately 10%, which is lower than that of the cylindrical electrophoretic separation. In particular, for large particles (800–2500 nm), the particle losses inside the cylindrical electrophoretic separation are approximately two times higher than those inside the parallel‐plate electrophoretic separation. The parallel‐plate electrophoretic separation is beneficial for the removal of ions and sub‐23 nm particles.  相似文献   

13.
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macrophase separation) or microphase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting microphase separation, we observe a rather striking pattern formation under confinement.  相似文献   

14.
The application of chemometric techniques to the resolution of overlapped peaks in capillary electrophoresis (CE) is described. When a physical separation can not be completely accomplished, chemometrics might still resolve the determination of the analytes mathematically. CE with diode array detection can provide a large amount of data consisting of spectra registered over time. In this study, the capillary electrophoretic separation of 1,2-naphthoquinone-4-sulfonate derivatives of amino acids is studied. Most of the common amino acid derivatives can be separated at 30 kV in a fused-silica capillary by using a 40 mM sodium tetraborate + isopropanol (3:1 v/v) solution as background electrolyte. However, peaks of certain derivatives (Phe, His, Leu and Ile) still overlap. A multivariate curve resolution method based on an alternating least squares optimization procedure is used for the resolution of the overlapped electrophoretic peaks. The method takes advantage of spectral and electrophoretic differences of analytes to recover their pure electrophoretic and spectral profiles. In addition, each analyte in the mixture can be quantified using the corresponding standards.  相似文献   

15.
A probe-regulated simultaneous separation (PRESS) using capillary electrophoresis (CE) was developed for separating single-stranded (ss) DNAs. We synthesized two DNA conjugate probes, -(5'-TGTGTGTGT-3')p-AAm(q)- and -(5'-GCCACCAGC-3')m-AAm(n)-, by copolymerizing 5'-methacryloyl-modified ssDNA with acrylamide (AAm), and characterized them in detail. The two probes showed lower electrophoretic mobilities than 5'-methacryloyl-modified ssDNAs. Furthermore, -(5'-TGTGTGTGT-3')p-AAm(q)- showed slightly faster electrophoretic mobility toward the anode than -(5'-GCCACCAGC-3')m-AAm(n)- due to its higher molar fraction of negatively-charged ssDNA. We successfully separated target ssDNAs having the same chain length by using two ssDNA conjugate probes that showed different electrophoretic mobilities, although the separation of these ssDNAs was difficult in conventional capillary electrophoresis systems.  相似文献   

16.
Electromobility focusing (EMF) is a relatively new protein separation technique that utilizes an electric field gradient and a hydrodynamic flow. Proteins are focused in order of electrophoretic mobility at points where their electrophoretic migration velocities balance the hydrodynamic flow velocity. Steady state bands are formed along the separation channel when equilibrium is reached. Further separation and detection can be easily achieved by changing the electric field profile. In this paper. we describe an EMF system with on-line UV absorption detection in which the electric field gradient was formed using a dialysis hollow fiber. Protein focusing and preconcentration were performed with this system. Voltage-controlled separation was demonstrated using bovine serum albumin and myoglobin as model proteins. The limitations of the current method are discussed, and possible solutions are proposed.  相似文献   

17.
The microphase separation and morphology of a nearly symmetric A(0.3)B(0.3)C(0.4) star triblock copolymer thin film confined between two parallel, homogeneous hard walls have been investigated by self-consistent mean field theory (SCMFT) with a pseudospectral method. Our simulation experiments reveal that under surface confinement, in addition to the typically parallel, perpendicular, and tilted cylinders, other phases such as lamellae, perforated lamellae, and complex hybrid phases have been found to be stable, which is attributed to block-substrate interactions, especially for those hybrid phases in which A and B blocks disperse as spheres and alternately arrange as cubic CsCl structures, with a network preferred structure of C block. The results show that these hybrid phases are also stable within a broad hybrid region (H region) under a suitable film thickness and a broad field strength of substrates because their free energies are too similar to being distinguished. Phase diagrams have been evaluated by purposefully and systematically varying the film thickness and field strength for three different cases of Flory-Huggins interaction parameters between species in the star polymer. We also compare the phase diagrams for weak and strong preferential substrates, each with a couple of opposite quality, and discuss the influence of confinement, substrate preference, and the nature of the star polymer on the stability of relatively thinner and thick film phases in this work.  相似文献   

18.
Shotgun proteomics based on peptide fractionation by using liquid chromatography has become the common procedure for proteomic studies, although in the very beginning of the field, protein separation by using electrophoresis was the main tool. Nonetheless, during the last two decades, the electrophoretic techniques for peptide mixtures fractionation have evolved as a result of relevant technological improvements. We also proposed the combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis for protein fractionation and sodium dodecyl sulfate free polyacrylamide gel electrophoresis for peptide separation as a novel procedure for proteomic studies. Here, we present an optimized device for sodium dodecyl sulfate free polyacrylamide gel electrophoresis improving peptide recoveries respect to the established electrophoretic technique off gel electrophoresis meanwhile conserving the excellent resolution described for the former technique in slab gel based systems. The device simultaneously allows the separation and the collection of fractionated peptides in solution.  相似文献   

19.
Within Landau–de Gennes theory, the texture of a cylindrically confined degenerate hybrid nematic cell containing a ?1 boojum has been investigated using a three-dimensional finite-difference iterative method. We impose strong anchoring conditions, with the nematic director perpendicular to the upper plate and planar degenerate at the lower plate. The director distribution of a degenerate hybrid-aligned nematic cell with a ?1 defect is known to have no axial symmetry. The axially symmetric characteristic of the biaxial distribution is surprising. The geometric confinement and boundary condition induce an order reconstruction. The influences of cell thickness on the frustrated cell and eigenvalue exchange solution for a sufficiently small thickness with order reconstruction nucleus have been analysed. Defect rings appear when cell thickness is sufficiently small.  相似文献   

20.
微流控芯片单细胞进样和溶膜   总被引:5,自引:0,他引:5  
单细胞分析对重大疾病的早期诊断、治疗和药物筛选以及细胞生理、病理过程的研究有重要意义.将毛细管电泳用于单细胞多组分的测定已取得一些成果,但受毛细管的一维结构限制,单细胞进样和溶膜操作较复杂.微流控分析芯片的网络结构和微米级的通道尺寸使简化单细胞分析成为可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号