首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography-high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.  相似文献   

2.
Target compound monitoring is often not sufficient to assess the quality of water, as many of the unknown micro-contaminants present might be a threat to the environment and human health. In this work, the potential of hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS) coupled to liquid chromatography (LC) in the elucidation of unknown compounds in environmental water samples has been explored. Based on accurate mass measurement, possible elemental compositions for the precursor ions were calculated. Using model compounds, a useful strategy was developed, enabling determination and evaluation of potential molecular formulae for the detected unknowns. The possibility of performing tandem mass spectrometric (MS/MS) acquisitions to obtain product ion spectra in accurate mass mode also helped to elucidate the structures of these unknowns or to detect some functional groups, to further evaluate potential formulae. The remaining formulae were searched against available databases such as the Merck Index and the NIST library. Where standards were commercially available, retention time and MS/MS data were both also used as confirmatory tools. The approach developed was applied for the identification of unknown compounds in different types of water. To improve sensitivity, environmental water samples were preconcentrated on-line in a polymeric cartridge by direct injection of 2 mL water into the SPE-LC/MS/MS system. For three unknowns, structures were proposed and confirmed with standards. Although other compounds could not be unequivocally identified based on the data available within this study, details about the possible structures of some are given.  相似文献   

3.
Identification of unknown water pollutants with liquid chromatography and tandem mass spectrometry (LC–MS–MS) is often more complex and time consuming than identification with gas chromatography and mass spectrometry (GC–MS). In order to focus the identification effort on relevant compounds, unknown peaks need to be selected carefully. Based on its frequency of occurrence in the LC–Diode Array Detection (LC–DAD) chromatograms of surface and infiltrated waters, an unknown peak was selected for identification with LC–MS–MS. This compound was identified as hexamethoxymethylmelamine (HMMM), a chemical often used in the coating industry. This is the first time the presence of this chemical in surface waters has been reported. In addition to HMMM, two other structurally related compounds were found to be present in the investigated surface water. A standard mixture of HMMM and its by-products did not exhibit (geno)toxicity under the test conditions applied in this study. In another example, a genotoxic fraction of an industrial wastewater was isolated and examined by LC–MS–MS using a modern quadrupole–orthogonal acceleration-time-of-flight mass spectrometer (Q-TOF). Four compounds were detected. The structures of two compounds present are proposed to be 9-amino-2-hydroxy-acridine and 9-hydroxy-acridine-N-oxide or its structural isomer dihydroxy-acridine. Confirmation with standards could not be carried out, as pure compounds are not available. The other two compounds (structural isomers) could not be identified based on the data available within this study.  相似文献   

4.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

5.
In this article, a systematic approach is proposed to assist and simplify the identification of transformation products (TPs) of organic contaminants. This approach is based on the use of characteristic fragmentation undergone by organic contaminants during MS/MS fragmentation events, and the relationship and consistency with the transformations experimented by these chemicals in the environment or during water treatment processes. With this in mind, a database containing accurate-mass information of 147 compounds and their main fragments generated by CID MS/MS fragmentation experiments was created using an LC-QTOF-MS/MS system. The developed database was applied to the identification of tentative TPs and related unexpected compounds in eight wastewater effluent samples. The approach comprises basically three stages: (a) automatic screening, (b) identification of possible TPs and (c) confirmation by MS/MS analysis. Parameters related to the search of compounds in the database have been optimized and their dependence with the exhaustiveness of the study evaluated. Eight degradation products, from the pharmaceuticals acetaminophen, amoxicillin, carbamazepine, erythromycin and azithromycin and from the pesticide diazinon, were identified with a high grade of accuracy. Three of them were confirmed by analysis of the corresponding analytical standards.  相似文献   

6.
The European Reach legislation will possibly drive producers to develop newly designed chemicals that will be less persistent, bioaccumulative or toxic. If this innovation leads to an increased use of more hydrophilic chemicals it may result in higher mobilities of chemicals in the aqueous environment. As a result, the drinking water companies may face stronger demands on removal processes as the hydrophilic compounds inherently are more difficult to remove. Monitoring efforts will also experience a shift in focus to more water-soluble compounds. Screening source waters on the presence of (emerging) contaminants is an essential step in the control of the water cycle from source to tap water. In this article, some of our experiences are presented with the hybrid linear ion trap (LTQ) FT Orbitrap mass spectrometer, in the area of chemical water analysis. A two-pronged strategy in mass spectrometric research was employed: (i) exploring effluent, surface, ground- and drinking-water samples searching for accurate masses corresponding to target compounds (and their product ions) known from, e.g. priority lists or the scientific literature and (ii) full-scan screening of water samples in search of 'unknown' or unexpected masses, followed by MS(n) experiments to elucidate the structure of the unknowns. Applications of both approaches to emerging water contaminants are presented and discussed. Results are presented for target analysis search for pharmaceuticals, benzotriazoles, illicit drugs and for the identification of unknown compounds in a groundwater sample and in a polar extract of a landfill soil sample (a toxicity identification evaluation bioassay sample). The applications of accurate mass screening and identification described in this article demonstrate that the LC-LTQ FT Orbitrap MS is well equipped to meet the challenges posed by newly emerging polar contaminants.  相似文献   

7.
建立了液相色谱-四极杆飞行时间质谱(LC-Q-TOF/MS)对饲料中非目标污染物(兽药)的筛查方法,以及未知物的判定和确认技术。饲料样品经0.1%EDTA-乙腈-甲醇(1∶1∶1,含0.1%甲酸)混合溶液提取,Q-TOF全扫描模式采集数据,数据经过峰对齐(质量误差5 m Da以内)、噪音过滤、自动排除无用峰等处理后,进行正交偏最小二乘判别分析(OPLS-DA)处理,根据Score图、S-Plot图和VIP图判定出特征离子,结合二级信息与自建谱库比对,进行结构式确认,或通过同位素丰度比例和分子式生成功能,确认分子式,结合二级断裂信息,判定特征离子的结构式,从而判定未知物的成分。结果显示:16份饲料样品共筛查出27种兽药。采用液相色谱-三重四极杆串联质谱法对其中的12种兽药进行定性定量分析,验证结果仅出现2个假阳性,兽药含量在12.5~152.0 mg/kg之间。通过LC-Q-TOF/MS结合OPLS-DA的方法能够对饲料中的非目标物进行筛查分析,方法准确度高。  相似文献   

8.
Traditionally, the screening of unknown pesticides in food has been accomplished by GC/MS methods using conventional library searching routines. However, many of the new polar and thermally labile pesticides and their degradates are more readily and easily analyzed by LC/MS methods and no searchable libraries currently exist (with the exception of some user libraries, which are limited). Therefore, there is a need for LC/MS approaches to detect unknown non-target pesticides in food. This report develops an identification scheme using a combination of LC/MS time-of-flight (accurate mass) and LC/MS ion trap MS (MS/MS) with searching of empirical formulas generated through accurate mass and a ChemIndex database or Merck Index database. The approach is different than conventional library searching of fragment ions. The concept here consists of four parts. First is the initial detection of a possible unknown pesticide in actual market-place vegetable extracts (tomato skins) using accurate mass and generating empirical formulas. Second is searching either the Merck Index database on CD (10,000 compounds) or the ChemIndex (77,000 compounds) for possible structures. Third is MS/MS of the unknown pesticide in the tomato-skin extract followed by fragment ion identification using chemical drawing software and comparison with accurate-mass ion fragments. Fourth is the verification with authentic standards, if available. Three examples of unknown, non-target pesticides are shown using a tomato-skin extract from an actual market place sample. Limitations of the approach are discussed including the use of A + 2 isotope signatures, extended databases, lack of authentic standards, and natural product unknowns in food extracts.  相似文献   

9.
Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF MS) has been applied to characterize the organic pollution pattern of marine salt samples collected in saltworks from the Spanish Mediterranean coast. After dissolving the samples in water, a solid-phase extraction was applied reaching with a 250-preconcentration factor. The screening methodology allowed the detection of sample components without any kind of pre-selection of target pollutants. The identity of components detected was established by accurate mass measurements and comparison of experimental full-acquisition spectra with theoretical MS libraries. Several organic pollutants were identified in the samples, like plasticizers - potentially toxic to humans - and fragrances -included within the group of pharmaceuticals and personal care products-, among others. Our results indicate that these contaminants can be found in the marine salt after the crystallization process. GC-TOF MS is a powerful technique for wide-scope screening of (semi)volatile, low-polar organic contaminants, able to investigate the presence of a large number of compounds. Searching of contaminants is not restricted to a target list of compounds. Therefore, unexpected contaminants can be discovered in an efficient way, with better sensitivity and selectivity than other conventional analytical techniques, and making use of the powerful qualitative information provided by full-spectrum acquisition at accurate mass.  相似文献   

10.
In this study we have developed and evaluated an analytical method for a rapid automated screening and confirmation of a large number of organic micro-contaminants (almost 400) and also the quantification of the positive findings in water samples of different types (surface and wastewaters) using liquid chromatography-electrospray quadrupole-time-of-flight mass spectrometry (LC-QTOFMS) based on the use of an accurate-mass database. The created database includes data not only on the accurate masses of the target ions but also on the characteristic in-source fragment ions, isotopic pattern and retention time data. This customized database was linked to commercially available software which extracted all the potential compounds of interest from the LC-QTOFMS raw data of each sample and matched them against the database to search for targeted compounds in the sample. The detailed fragmentation information has also been used as a powerful tool for the automatic identification of unknown compounds and/or transformation products with similar structures to those of known organic contaminants included in the database. The database can be continually enlarged. To confirm identification of compounds which have no fragment ions (or fragments with low intensity/relative abundance) from in-source CID fragmentation or isomers which are not distinguished within full single mass spectra, a "Targeted MS/MS" method is developed. Thereafter, these compounds can be further analyzed using the collision energy (CE) in QTOF-MS/MS mode. Linearity and limits of detection were studied. Method detection limits (MDLs) in effluent wastewater and river waters were, in most cases, lowers or equal to 5 and 2 ng/L, respectively. Only 15 compounds had MDLs between 5 and 50 ng/L in effluent wastewater matrix. We obtained a linearity of the calibration curves over two orders of magnitude. The method has been applied to real samples and the results obtained reveal that most of the pharmaceutically active compounds contained in the created database were present in the water samples with concentrations in the range of ng/L and μg/L levels and in most of the samples between 2 and 15 pesticides of the 300 contained in the database were also detected. In addition to the compounds included in the database, some degradation products were found, thus revealing the method as a useful tool for the analysis of organic micro-contaminants in waters.  相似文献   

11.
Drinking water produced from surface water may contain many polar, hydrophilic compounds in spite of different treatment steps such as soil filtration, ozone treatment and activated carbon filtration. Little is known about these compounds. The objectives of this work were the detection and identification by means of tandem mass spectrometry (MS-MS) coupled on-line by a thermospray interface with liquid chromatography. Quantification is possible if standard compounds are available. The different compounds in the water extracts were not only separated by means of an analytical column but also using MS-MS after loop injection bypassing the analytical column. Molecular weight information in the loop spectra (overview spectra) and collisionally induced dissociation (CID) made possible the identification of some of these compounds which cannot be eliminated in the drinking water treatment process. Identification was not only done by interpretation of the recorded daughter- and parent-ion spectra but also by comparing them with a laboratory-made daughter-ion library of polar, hydrophilic pollutants. Direct mixture analysis using MS-MS allows the detection and identification of some of the pollutants if they reach the drinking water in the course of the surface water treatment process because of their biochemical and chemical persistence and/or non-sorbability during the soil or activated carbon filtration process. The proposed method for the analysis of water for polar, non-volatile and/or thermolabile organic substances is a quick, specific and powerful technique which makes it possible to detect and identify these substances without any chromatographic separation or derivatization  相似文献   

12.
Natural product screening in plants has always been a difficult task due to the complex nature of the plant material and diverse structures of the compounds present in them. Flavonoids are important and diverse class of plant secondary metabolites with numerous medicinal activities. The present study focuses on the development of a high-resolution tandem mass spectral library for the rapid and authentic identification of common flavonoids. A total of forty flavonoid standards belong to class flavones, isoflavones, flavanones, flavanols and anthocyanins were pooled into two solutions applying logP-based strategy. The flavonoids were analyzed using LC-QTOF-MS high-resolution mass spectrometer with optimization of different instrumental parameters to achieve good sensitivity. The library was built by incorporating names, molecular formulae, exact masses, and MS, and MS/MS spectra of analyzed flavonoids using Bruker Library Editor tool. The fragmentation pattern observed for the standard compounds were compared to the fragments reported in the literature. To assess the practical implications, an extract of tea sample was analyzed and screened using the developed library, which resulted in the identification of three common flavonoids based on their HR-ESI-MS/MS spectral features. The established LC-HR-MS/MS method can be used for the targeted identification of flavonoids in complex samples like food material from different botanical families.  相似文献   

13.
Investigation of trace-level non-target compounds by gas chromatography/mass spectrometry (GC/MS) often is a challenging task that requires powerful software tools to detect the unknown components, to obtain the deconvoluted mass spectra, and to interpret the data if no acceptable library match is obtained. In this paper, the complementary use of electron ionization (EI) and chemical ionization (CI) is investigated in combination with GC/time-of-flight (TOF) MS for the elucidation of organic non-target (micro)contaminants in water samples. Based on accurate mass measurement of the molecular and fragment ions from the TOF MS, empirical formulae were calculated. Isotopic patterns, carbon number prediction filter and nitrogen rule were used to reduce the number of possible formulae. The candidate formulae were searched in databases to find possible chemical structures. Selection from possible structure candidates was achieved using information on substructures and observed neutral losses derived from the fragment ions. Four typical examples (bifenazate, boscalid, epoxiconazole, and fenhexamid) are used to illustrate the methodology applied and the various difficulties encountered in this process. Our results indicate that elucidation of unknowns cannot be achieved by following a standardized procedure, as both expertise and creativity are necessary in the process.  相似文献   

14.
Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown compounds from tandem mass spectra. Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain. On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space, but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in silico fragmentation prediction allow users to search such databases of chemical structures. We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the performance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone, to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) has gained wide acceptance in many fields of chemistry, for example, proteomics, metabolomics and small molecule analysis. This has been due to the numerous technological advances made to this mass analyser in recent years. In the environmental field, the instrument has proven to be one of the most powerful approaches for the screening of organic pollutants in different matrices due to its high sensitivity in full acquisition mode and mass accuracy measurements. In the work presented here, the optimum experimental conditions for the creation of an empirical TOF MS spectra library have been evaluated. For this model we have used a QTOF Premier mass spectrometer and investigated its functionalities to obtain the best MS data, mainly in terms of mass accuracy, dynamic range and sensitivity. Different parameters that can affect mass accuracy, such as lock mass, ion abundance, spectral resolution, instrument calibration or matrix effect, have also been carefully evaluated using test compounds (mainly pesticides and antibiotics). The role of ultra-high-pressure liquid chromatography (UHPLC), especially when dealing with complex matrices, has also been tested. In addition to the mass accuracy measurements, this analyser allows the simultaneous acquisition of low and high collision energy spectra. This acquisition mode greatly enhances the reliable identification of detected compounds due to the useful (de)protonated molecule and fragment ion accurate mass information obtained when working in this mode. An in-house empirical spectral library was built for approximately 230 organic pollutants making use of QTOF MS in MS(E) mode. All the information reported in this paper is made available to the readers to facilitate screening and identification of relevant organic pollutants by QTOF MS.  相似文献   

16.
In this work, a multiclass screening method for organic contaminants in natural and wastewater has been developed and validated for qualitative purposes, i.e. to ensure the reliable and sensitive identification of compounds detected in samples at a certain level of concentration. The screening is based on the use of GC-TOF MS, and the sample procedure involves solid phase extraction with C(18) cartridges. Around 150 organic contaminants from different chemical families were investigated, including PAHs, octyl/nonyl phenols, PCBs, PBDEs and a notable number of pesticides, such as insecticides (organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and chloroacetanilides), fungicides and several relevant metabolites. Surface water, ground water and effluent wastewater were spiked with all target analytes at three concentration levels (0.02, 0.1 and 1 μg/L). Influent wastewater and raw leachate from a municipal solid waste treatment plant were spiked at two levels (0.1 and 1 μg/L). Up to five m/z ions were evaluated for every compound. The identification criterion was the presence of, at least, two m/z ions at the expected retention time, measured at their accurate mass, and the accomplishment of the Q/q(i) intensity ratio within specified tolerances. The vast majority of compounds investigated were correctly identified in the samples spiked at 1 μg/L. When analyte concentration was lowered down to 0.1 μg/L the identification was more problematic, especially in complex-matrix samples like influent wastewater. On the contrary, many contaminants could be properly identified at the lowest level 0.02 μg/L in cleaner matrices. The procedure was applied to the screening of water samples of different origin and matrix composition and allowed the detection of several target contaminants. A highly reliable identification could be carried out thanks to the sensitive full-spectrum acquisition at accurate mass, the high selectivity reached with the use of narrow-mass window extracted ion chromatograms, the low mass errors observed in the positive detections and the Q/q ratio accomplishment.  相似文献   

17.
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a “scheduled” survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP® hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization–MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography–mass spectrometry, and liquid chromatography–diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).  相似文献   

18.
Persistent and Mobile Organic Compounds (PMOCs) are emerging pollutants in the environment that have only been rarely detected in previous years due to the lack of analytical techniques available for their analysis. These compounds, being very polar, are able to spread through the surface waters, and reach groundwaters and drinking water sources. The challenges in the analysis of these compounds in water include their poor extraction efficiencies from environmental matrices and weak retention in conventional chromatographic columns. As a result, the toxicity and environmental fate of PMOCs are largely unknown. This review will examine recent developments in sorbent and chromatographic column technologies, and other sample preparation strategies that will enable analysis of PMOCs and advance our knowledge on their fate and transport in the environment. In addition, analysis of these compounds in water via liquid chromatography with tandem mass spectrometry (LC–MS/MS) are discussed in this review.  相似文献   

19.
In this study we developed a GC–MS method for the analysis of priority pollutants, personal care products (PCPs) and other emerging contaminants in waters using large volume injection with backflushing. Analyses are performed in the SIM/scan mode, so that in addition to the targeted organic contaminants, this method allows the simultaneous screening of non-target compounds. The scan data are analysed using Deconvolution Reporting Software (DRS) which screens the results for 934 organic contaminants. Deconvolution helps identify contaminants that are buried in the chromatogram by co-extracted materials and significantly reduces chromatographic resolution requirements, allowing shorter analysis times. All compounds have locked retention times and we can continually update and extend the mass spectral library including new compounds. Linearity and limits of detection in SIM and full-scan mode were studied. Method detection limits (MDLs) in effluent wastewater ranged in most of the cases from 1 to 36 ng/L in SIM mode and from 4 to 66 ng/L in full-scan mode; while in river water from 0.4 to 14 and 2–29 ng/L in SIM and full-scan mode, respectively. We obtained a linearity of the calibration curves over two orders of magnitude. The method has been applied to the screening of a large number of organic contaminants – not only to a subset of targets – in urban wastewaters from different wastewater treatment plants and also in river waters. Most of the target compounds were detected at concentration levels ranging from 11 to 8697 ng/L and from 7 to 1861 ng/L in effluent wastewater and river waters, respectively. Additionally, a group of 12 new compounds were automatically identified using the AMDIS and NIST libraries. Other compounds, such as the 4-amino musk xylene, a synthetic fragrance metabolite, which was not included in the databases, but has been manually searched in the full-scan chromatograms.  相似文献   

20.
An automated liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method is presented for the screening and confirmation of 16 beta-blocking drugs in clinical and autopsy urine samples. The described method involved C(18) solid phase extraction, LC separation and MS analysis on a triple-stage quadrupole mass analyser. Samples were initially pre-screened for the presence of any beta-blocking drugs using LC/MS with selected ion monitoring. Any compounds tentatively identified as beta-blocking drugs on the basis of their LC retention time and protonated molecular ion were then automatedly subjected to a second analysis in which the relevant MS/MS product ion mass spectra were acquired. These product ion mass spectra were then automatically searched against a 400-substance mass spectral library containing previously acquired beta-blocking drugs. The results demonstrated that library search of beta-blocking drugs in urine with MS/MS product ion mass spectra was more reliable and produced fewer false negatives than library searching with mass spectra derived from single-stage quadrupole MS. The limits of identification in the MS/MS product ion scan ranged from 0.02 mg l(-1) for carvedilol to 1.2 mg l(-1) for pindolol, the majority of the values being below 0.2 mg l(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号