首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vibrational spectrum of the vinyl bromide cation in the first excited electronic state A 2A' was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy. The use of an improved vacuum-ultraviolet radiation source based on four-wave sum frequency mixing in Hg resulted in excellent sensitivity for MATI signals. From the MATI spectrum, the ionization energy to the A 2A' state of the cation was determined to be 10.9150+/-0.0006 eV. Nearly complete vibrational assignments for the MATI peaks were possible by utilizing the vibrational frequencies and Franck-Condon factors calculated at the density-functional theory (DFT) and time-dependent DFT/B3LYP levels with the 6-311+G(df,p) basis set.  相似文献   

2.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[g,h,i]perylene (BghiP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of both the first electronically excited state and the ground cationic state. Extensive vibronic coupling due to a nearby electronically excited state manifests through strong Franck-Condon (FC) forbidden bands, which are stronger than even the FC allowed bands in the REMPI spectrum. Theoretical calculations using Gaussian are problematic in identifying the electronic configurations of the excited electronic states and predicting the transition energies. However, by setting the keyword for the second excited electronic state, both density functional theory and configuration interaction methods can reproduce the observed spectrum qualitatively. The general agreement significantly helps with the vibrational assignment. The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the intermediate electronic state. In addition, almost all ZEKE spectra exhibit a similar vibrational distribution, and the distribution can be reproduced by an FC calculation from the vibronic origin of the first excited electronic state to the cationic state using Gaussian 09. These results suggest a remarkable structural stability of BghiP in accommodating the additional charge. All observed vibrational bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far-infrared bands for astrophysical applications.  相似文献   

3.
We have computed the vibrational spectrum of the helium ionized trimer He(3)(+) using three different potential energy surfaces [D. T. Chang and G. L. Gellene, J. Chem. Phys. 119, 4694 (2003); E. Scifoni et al., ibid. 125, 164304 (2006); I. Paidarova et al., Chem. Phys. 342, 64 (2007)]. Differences in the details of these potential energy surfaces induce discrepancies between bound state energies of the order of 0.01 eV. The effects of the geometric phase induced by the conical intersection between the ground electronic potential energy surface and the first excited one are studied by computing vibrational spectra with and without this phase. The six lowest vibrational bound states are negligibly affected by the geometric phase. Indeed, they correspond to wavefunctions localized in the vicinity of the linear symmetric configurations and can be assigned well defined vibrational quantum numbers. On the other hand, higher excited states are delocalized, cannot be assigned definite vibrational quantum numbers, and the geometric phase shifts their energies by approximately 0.005 eV.  相似文献   

4.
A new technique [mass-analyzed threshold ionization (MATI)-photodissociation yield spectroscopy] to probe bound excited states of a cation was developed, which measures photodissociation yield of the cation generated by mass-analyzed threshold ionization. A vibrational spectrum of vinyl bromide cation in the (~)B state was obtained using this technique. Optical resolution in the low vibrational energy range of the spectrum was far better than in conventional MATI spectra. The origin of the (~)B state was found at 2.2578+/-0.0003 eV above the first ionization onset. Almost complete vibrational assignment was possible for peaks appearing in the spectrum. Analysis of time-of-flight profiles of C(2)H(3) (+) product ion obtained with different laser polarization angles suggested that photoexcited vinyl bromide cation remained in the (~)B state for several hundred picoseconds prior to internal conversion to the ground state and dissociation therein.  相似文献   

5.
The quasiclassical absorption spectrum of the water dimer in the A band was calculated taking into account motion in all degrees of freedom of the system. The ab initio excited state potentials employed were interpolated by the modified Shepard interpolation method using QMRCI energies and state-averaged MCSCF gradients and Hessians. The ground state vibrational wavefunction was variationally calculated using an adiabatic separation between the high and low frequency normal modes of the system. The calculated spectrum of water dimer shows a clear blueshift with respect to the monomer, but also a small red tail, in agreement with the prediction by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. Previous three-dimensional model studies of the photodissociation of the water dimer by Valenzano et al. [J. Chem. Phys. 123, 034303 (2005)] did not show this red tail. A thorough analysis of the dependence of the spectrum on the modes coupled explicitly in the calculation of the spectrum shows that the red tail is due to coupling between the intramolecular stretch vibrations on different monomers.  相似文献   

6.
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.  相似文献   

7.
The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.  相似文献   

8.
Vibrational spectrum of vinyl chloride cation in the first excited electronic state, A2 A', was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy. Use of an improved vacuum ultraviolet radiation source based on four-wave sum frequency mixing in Hg resulted in excellent sensitivity for the MATI signals. From the MATI spectrum, the ionization energy to the A2 A' state of the cation was determined to be 11.6667 +/- 0.0006 eV. Nearly complete vibrational assignment for the MATI peaks was possible by utilizing the vibrational frequencies and Franck-Condon factors calculated at the DFT and TDDFT/B3LYP levels with the 6-311++G(3df,3pd) basis set. Geometry of the cation in the A2 A' state was determined by Franck-Condon fitting of the MATI spectrum.  相似文献   

9.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   

10.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

11.
Structural and optical properties of isolated perylene‐3,4,9,10‐tetracarboxylic acid dianhydride molecules adsorbed on (100) oriented NaCl and KCl surfaces were studied theoretically to analyze the recently observed red‐shift of the optical excitation spectrum after adsorption (Müller et al., Phys. Rev. B, 2011, 83, 241203; Paulheim et al. Phys. Chem. Chem. Phys., 2013, 15, 4906). The ground‐state structures were obtained by periodic dispersion‐corrected density functional theory (DFT) calculations. For the excited‐state calculations, nonperiodic time‐dependent DFT methods were applied for a cluster model embedded in point charges. The range‐separated hybrid functional CAM‐B3LYP was used. Correlation‐consistent basis sets were used and the calculated excitation energies were extrapolated to the complete basis set limit. The shift of the first optical excitation energy was analyzed in terms of electronic and geometric contributions. It was found that both the distortion of the molecule due to the interaction with the surface and the electrostatic potential of the surface play an important role. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
We have analyzed singlet and triplet excitation energies in oligothiophenes (up to five rings) using time-dependent density-functional theory (TD-DFT) with different exchange-correlation functionals and compared them with results from the approximate coupled-cluster singles and doubles model (CC2) and experimental data. The excitation energies have been calculated in geometries obtained by TD-DFT optimization of the lowest excited singlet state and in the ground-state geometries of the neutral and anionic systems. TD-DFT methods underestimate photoluminescence energies but the energy difference between singlet and triplet states shows trends with the chain-length similar to CC2. We find that the second triplet excited state is below the first singlet excited state for long oligomers in contrast with the previous assignment of Rentsch et al. (Phys.Chem. Chem. Phys. 1999, 1, 1707). Their photodetachment photoelectron spectroscopy measurements are better described by considering higher triplet excited states.  相似文献   

13.
In this paper the authors use the optimal internal vibrational coordinates previously determined for the electronic ground state of the ozone molecule to study the vibrational spectrum of the molecule employing the second empirical potential energy surface calculated by Tyuterev et al. [Chem. Phys. Lett. 316, 271 (2000)]. First, the authors compute variationally all the bound vibrational energy levels of the molecule up to the dissociation limit and state the usefulness of the optimal coordinates in this respect, which allows us to converge all the bound levels using relatively small anharmonic basis sets. By analyzing the expansion coefficients of the wave functions, they show then that a large portion of the vibrational spectrum of O3 can be structured in nearly separable polyadic groups characterized by the polyad quantum number N=n1+n2+n(theta) corresponding to the optimal internal coordinates. Accordingly, they determine an internal effective vibrational Hamiltonian for O3 by fitting the effective Hamiltonian parameters to the experimental vibrational frequencies, using as input parameters in the fit those extracted from an analytical second-order Van Vleck perturbation theory calculation. It is finally shown that the internal effective Hamiltonian thus obtained accurately describes the vibrational spectrum of ozone in the low and medium energy regimes.  相似文献   

14.
Quantum close-coupling scattering calculations of rotational energy transfer in the vibrationally excited CO due to collisions with He atom are presented for collision energies between 10(-5) and approximately 1000 cm-1 with CO being initially in the vibrational level upsilon=2 and rotational levels j=0,1,4, and 6. The He-CO interaction potential of Heijmen et al. [J. Chem. Phys. 107, 9921 (1997)] was adopted for the calculations. Cross sections for rovibrational transitions and state-to-state rotational energy transfer from selected initial rotational levels were computed and compared with recent measurements of Carty et al. [J. Chem. Phys. 121, 4671 (2004)] and available theoretical results. Comparison in all cases is found to be excellent, providing a stringent test for the scattering calculations as well as the reliability of the He-CO interaction potential by Heijmen et al.  相似文献   

15.
The model Hamiltonian approach of Koppel et al. [Adv. Chem. Phys. 57, 59 (1984)] is used to analyze the electronic spectroscopy of the nitrate radical (NO3). Simulations of negative ion photodetachment of NO3-, the X 2A2'<--B 2E' dispersed fluorescence spectrum of NO3, and the B 2E'<--X 2A2' absorption spectrum are all in qualitative agreement with experiment, indicating that the model Hamiltonian contains most or all of the essential physics that govern the strongly coupled X 2A2' and B 2E' electronic states of the radical. All 14 bands seen in the dispersed fluorescence spectrum below 2600 cm-1 are assigned based on the simulations, filling in a few gaps left by previous work, and 7 additional bands below 4000 cm-1 are tentatively assigned. The assignment is predicated on the assumption that the nu3 level of NO3 is near 1000 cm-1 rather than 1492 cm-1 as is presently believed. Support for this reassignment (which associates the 1492 cm-1 band with the nu1+nu4 level) comes from both the model Hamiltonian spectrum and a Fourier-transform infrared feature at 2585 cm-1 that is consistent with the large and positive cross anharmonicity between nu1 and nu4 needed for the alternative 1492 cm-1 assignment. An apparent systematic deficiency exists in the treatment of the model Hamiltonian for levels involving nu4. A discussion of the correlation between energy levels in the rigid D3h and C2v limits is illustrative, and provides insight into just how hard it is to treat the degenerate bending coordinate (q4) of NO3 accurately.  相似文献   

16.
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).  相似文献   

17.
Al-uracil (Al-C4H4N2O2) was synthesized in a laser-vaporization supersonic molecular beam source and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) photoelectron spectroscopy and density functional theory (DFT). The DFT calculations predicted several low-energy Al-uracil isomers with Al binding to the diketo, keto-enol, and dienol tautomers of uracil. The ZEKE spectroscopic measurements of Al-uracil determined the ionization energy of 43 064(5) cm-1 [or 5.340(6) eV] and a vibrational mode of 51 cm-1 for the neutral complex and several vibrational modes of 51, 303, 614, and 739 cm-1 for the ionized species. Combination of the ZEEK spectrum with the DFT and Franck-Condon factor calculations determined the preferred isomeric structure and electronic states of the Al-uracil complex. This isomer is formed by Al binding to the O4 atom of the diketo tautomer of uracil and has a planar Cs symmetry. The ground electronic states of the neutral and ionized species are 2A' ' and 1A', respectively. The 2A' ' neutral state has a slightly shorter Al-O4 distance than the 1A' ion state. However, the 1A' ion state has stronger metal-ligand binding compared to the 2A' ' state. The increased Al-O4 distance from the 2A' ' state to the 1A' state is attributed to the loss of the pi binding interaction between Al and O4 in the singlet ion state, whereas the increased metal-ligand binding strength is due to the additional charge-dipole interaction in the ion that surpasses the loss of the pi orbital interaction.  相似文献   

18.
Distelrath V  Boesl U 《Faraday discussions》2000,(115):161-74; discussion 175-204
Anion-ZEKE-photoelectron spectra of ClO-, OClO-, ClOO- and the van der Waals cluster ArCl- have been measured. Refined or new values for the electron affinity of ClO, OClO and ClOO have been found. The peak positions in these spectra are in very good agreement with former ClO- and OClO- anion-photoelectron spectra (K. M. Gilles, M. L. Polak and W. C. Lineberger, J. Chem. Phys., 1992, 96, 8012) and a recent ArCl- anion-ZEKE spectrum (T. Lenzer, I. Yourshaw, M. Furlanetto, G. Reiser and D. Neumark, J. Chem. Phys., 1992, 110, 9578). The higher resolution of our anion-ZEKE-photoelectron spectrum of OClO- led to a refined assignment of the corresponding anion-photoelectron spectrum. In addition, a strong difference in the relative intensities of the vibrational peaks has been found in the anion-ZEKE-spectrum of OClO- in comparison with the anion-photoelectron spectrum. For the first time, mass selective spectroscopic information has been obtained for ClOO. The strong similarity to the ArCl- spectrum indicates a weakly bound van der Waals cluster Cl.O2. Binding energies of the anion, neutral ground and neutral excited state could be deduced. These are in good agreement with the electron affinities of Cl and ClOO, but differ from theoretical values (K. A. Peterson and H. J. Werner, J. Chem. Phys., 1992, 96, 8948) by a factor of 4.5 and from thermochemically determined values (J. M. Nicovich, K. D. Kreutter, C. J. Shackelford and P. H. Wine, Chem. Phys. Lett., 1991, 179, 367 and S. Baer, H. Hippler, R. Rahn, M. Siefke, N. Seitzinger and J. Troe, J. Chem. Phys., 1991, 95, 6463) by a factor of 9.  相似文献   

19.
Full configuration interaction (FCI) has been used in conjunction with the lithium [6s5p3d1f] (Iron, M. A.; et al. Mol. Phys. 2004, 101, 1345) and hydrogen aug-cc-pVTZ basis sets to construct an 83-point potential energy surface of the 1A1 ground state of 7LiH2+. Vibrational and rovibrational wave functions of the (6,7)LiH2+, (6,7)LiHD+, and (6,7)LiD2+ ground states were calculated variationally using an Eckart-Watson Hamiltonian. For (7)LiD2+, rovibrational transition frequencies for K = 0, 1, 2 and J < or = 10 are within ca. 0.1% of recent experimental values (Thompson, C. D.; et al. J. Chem. Phys. 2006, 125, 044310). A 47-point FCI dipole moment surface was embedded in the rovibrational Hamiltonian to calculate vibrational and rovibrational radiative properties. At 296 K, with v < or = 4 and J < or = 4, the 2(02) <-- 3(03) rotational transition in the |001> band was found to have the greatest spectral intensity with respect to the ground electronic states of (6,7)LiH2+, (6,7)LiHD+, and (6,7)LiD2+. In each case, the most intense rovibrational transitions have been assigned unequivocally using the J, Ka, Kc assignment scheme.  相似文献   

20.
State-resolved cross beam experiments [H. Udseth et al., J. Chem. Phys. 60, 3051 (1974); J. Krutein and F. Linder, J. Chem. Phys. 71, 599 (1979); G. Niedner-Schatteburg and J. P. Toennies, Adv. Chem. Phys. LXXXII, 553 (1992)], coupled with proton energy loss spectroscopy for the inelastic scattering of H(+) from CO in the collision range of 10-30 eV show very low vibrational excitation of the target molecule. Stimulated by the experimentally observed low vibrational inelasticity in the system the ground and the first two low-lying excited electronic potential-energy surfaces have been computed using the ab initio multireference configuration interaction method. Quantum dynamics has been performed on the ground potential energy surface in the framework of vibrational close-coupling rotational infinite-order sudden approximation. The various computed dynamical attributes such as differential and integral cross sections, and average vibrational energy transfer are analyzed in detail, and compared successfully with the available experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号