首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Two new spin crossover complexes [FeL(py)(2)] (1) and [FeL(DMAP)(2)] (2) with L being a tetradentate N(2)O(2)(2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N',O(2),O(2)'], py = pyridine and DMAP = p-dimethylaminopyridine have been investigated using temperature-dependent susceptibility and thermogravimetric and photomagnetic measurements as well as M?ssbauer spectroscopy and X-ray structure analysis. Both complexes show a cooperative spin transition with an approximately 9 K wide thermal hysteresis loop in the case of 2 (T(1/2) upward arrow = 183 K and T(1/2) downward arrow = 174 K) and an approximately 2 K wide thermal hysteresis loop in the case of the pyridine diadduct 1 (T(1/2) upward arrow = 191 K and T(1/2) downward arrow = 189 K). The spin transition was additionally followed by different temperature-scanning calorimetry and M?ssbauer spectroscopy for 2, and a good agreement for the transition temperatures obtained with the different methods was found. Results from X-ray structure analysis indicate that the cooperative interactions are due to elastic interactions in both compounds. They are more pronounced in the case of 2 with very short intermolecular iron-iron distances of 7.2 A and several intense C-C contacts. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bit of the equatorial ligand, from 108 degrees in the high-spin state to 90 degrees in the low-spin state. The reflectivity measurements of both compounds give at low temperature indication that at the sample surface the light-induced excited spin state trapping (LIESST) effect occurs. In bulk condition using a SQUID magnetometer the complex 2 displays some photomagnetic properties with an photoexcitation level of 60% and a T(LIESST) value of 53 K.  相似文献   

2.
Light‐induced excited spin‐state trapping (LIESST) in iron(II) spin‐crossover compounds, that is, the light‐induced population of the high‐spin (S=2) state below the thermal transition temperature, was discovered thirty years ago. For irradiation into metal–ligand charge transfer (MLCT) bands of the low‐spin (S=0) species the acknowledged sequence takes the system from the initially excited 1MLCT to the high‐spin state via the 3MLCT state within ca. 150 fs, thereby bypassing low‐lying ligand‐field (LF) states. Nevertheless, these play a role, as borne out by the observation of LIESST and reverse‐LIESST on irradiation directly into the LF bands for systems with only high‐energy MLCT states. Herein we elucidate the ultrafast reverse‐LIESST pathway by identifying the lowest energy S=1 LF state as an intermediate state with a lifetime of 39 ps for the light‐induced high‐spin to low‐spin conversion on irradiation into the spin‐allowed LF transition of the high‐spin species in the NIR.  相似文献   

3.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

4.
Transient absorption spectroscopy is used to study the excited‐state dynamics of Co3(dpa)4(NCS)2, where dpa is the ligand di(2‐pyridyl)amido. The ππ*, charge‐transfer, and d–d transition states are excited upon irradiation at wavelengths of 330, 400 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution and the transient species show weak absorption. We thus propose that a low‐lying metal‐centered d–d state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal rapid conversion from the ligand‐centered ππ* and the charge‐transfer states to this metal‐centered d‐d state within 100 fs. The excited molecule then crosses to a second d–d state within the ligand‐field manifold, with a time coefficient of 0.6–1.4 ps. Because the ground‐state bleaching band recovers with a time coefficient of 10–23 ps, we propose that an excited molecule crosses from the low‐lying d–d state either directly within the same spin system or with spin crossing via the state 2B to the ground state 2A2 (symmetry group C4). In this trimetal string complex, relaxation to the ground electronic surface after excitation is thus rapid.  相似文献   

5.
Thin films of [Fe(H(2)Bpz)(2)(phen)] (1) and [Fe(H(2)Bpz)(2)(bipy)] (2) are prepared by vacuum deposition and investigated with respect to their spin crossover behaviour. For the first time light-induced excited spin state trapping (LIESST) is observed in such systems. T(1/2) and T(LIESST) in the films are in agreement with the bulk values.  相似文献   

6.
Ab initio calculations have been performed on Fe (II) (tz) 6 (tz = 1- H-tetrazole) to establish the variation of the energy of the electronic states relevant to (reverse) light-induced excited-state spin trapping (LIESST) as function of the Fe-ligand distance. Equilibrium distances and absorption energies are correctly reproduced. The deactivation of the excited singlet is proposed to occur in the Franck-Condon region through overlap of vibrational states with an intermediate triplet state or an intersystem crossing along an asymmetric vibrational mode. This is followed by an intersystem crossing with the quintet state. Reverse LIESST involves a quintet-triplet and a triplet-singlet intersystem crossing around the equilibrium distance of the high-spin state. The influence of the transition metal is studied by changing Fe (II) for Co (II), Co (III), and Fe (III). The calculated curves for Fe (III) show remarkable similarity with Fe (II), indicating that the LIESST mechanism is based on the same electronic conversions in both systems.  相似文献   

7.
The light induced excited spin state trapping LIESST and the reverse LIESST-like phenomena are observed below and above the spin transition temperature, respectively, for new dinuclear diiron(II) complexes and familiar Fe(II) complexes with thiocyanate ligands by monitoring the Raman spectra where only excitation light of various wavelengths for the spectroscopy was used without extra excitation light sources.  相似文献   

8.
Transient absorption spectroscopy has been used to elucidate the nature of the S1 intermediate state populated following excitation of cob(III)alamin (Cbl(III)) compounds. This state is sensitive both to axial ligation and to solvent polarity. The excited-state lifetime as a function of temperature and solvent environment is used to separate the dynamic and electrostatic influence of the solvent. Two distinct types of excited states are identified, both assigned to pi3d configurations. The spectra of both types of excited states are characterized by a red absorption band (ca. 600 nm) assigned to Co 3d --> 3d or Co 3d --> corrin pi* transitions and by visible absorption bands similar to the corrin pi-->pi* transitions observed for ground state Cbl(III) compounds. The excited state observed following excitation of nonalkyl Cbl(III) compounds has an excited-state spectrum characteristic of Cbl(III) molecules with a weakened bond to the axial ligand (Type I). A similar excited-state spectrum is observed for adenosylcobalamin (AdoCbl) in water and ethylene glycol. The excited-state spectrum of methyl, ethyl, and n-propylcobalamin is characteristic of a Cbl(III) species with a sigma-donating alkyl anion ligand (Type II). This Type II excited-state spectrum is also observed for AdoCbl bound to glutamate mutase. The results are discussed in the context of theoretical calculations of Cbl(III) species reported in the literature and highlight the need for additional calculations exploring the influence of the alkyl ligand on the electronic structure of cobalamins.  相似文献   

9.
The thermal and light-induced spin transitions in [Fe(x)Zn(1-x)(phen)2(NCS)2] (phen = 1,10-phenantholine) have been investigated by magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. These complexes display a thermal spin transition and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. For each compound, the thermal spin transition temperature, T1/2, and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T1/2 decreases with the metal dilution while T(LIESST) remains unchanged. This behaviour is discussed on the basis of the kinetic study governing the photo-induced back conversion.  相似文献   

10.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

11.
A 2D iron(II) spin crossover complex, [FeII(HLH,Me)2](ClO4)2.1.5MeCN (1), was synthesized, where HLH,Me = imidazol-4-yl-methylidene-8-amino-2-methylquinoline. 1 showed a gradual spin transition between the HS (S = 2) and LS (S = 0) states from 180 to 325 K within the first warming run from 5 to 350 K, in which 1.5MeCN is removed, and there was an abrupt spin transition at T1/2 downward arrow = 174 K in the first cooling run from 350 to 5 K. Following the first cycle, the compound showed an abrupt spin transition at T1/2 upward arrow = 185 K and T1/2 downward arrow = 174 K with 11 K wide hysteresis in the second cycle. The crystal structures of 1 were determined at 296 (an intermediate between the HS and LS states) and 150 K (LS state). The structure consists of a 2D extended structure constructed of both the bifurcated NH...O- hydrogen bonds between two ClO4- ions and two neighboring imidazole NH groups of the [FeII(HLH,Me)2]2+ cations and the pi-pi interactions between the two quinolyl rings of the two adjacent cations. Thermogravimetric analysis showed that solvent molecules are gradually eliminated even at room temperature and completely removed at 369 K. Desolvated complex 1' showed an abrupt spin transition at T1/2 upward arrow = 180 K and T1/2 downward arrow = 174 K with 6 K wide hysteresis.  相似文献   

12.
In the present work we have studied the accuracy of excitation energies calculated from spin-flip transitions with a formulation of time-dependent density functional theory based on a noncollinear exchange-correlation potential proposed in a previous study. We compared the doublet-doublet excitation energies from spin-flip transitions and ordinary transitions, calculated the multiplets splitting of some atoms, the singlet-triplet gaps of some diradicals, the energies of excited quartet states with a doublet ground state. In addition, we attempted to calculate transition energies with excited states as reference. We compared the triplet excitation energies and singlet-triplet separations of the excited state from spin-flip and ordinary transitions. As an application, we show that using excited quartet state as reference can help us fully resolve excited states spin multiplets. In total the obtained excitation energies calculated from spin-flip transitions agree quite well with other theoretical results or experimental data.  相似文献   

13.
The Mg K-edge and Zn K- and L3-edge X-ray absorption near edge spectra of Mg and Zn porphyrins in the ground state and low-lying optically excited states are calculated. Also computed are X-ray absorption near edge spectra of Fe(II) spin crossover compound in its ground and low-lying optically excited states, motivated by a recent experiment (J. Phys. Chem. A 2006, 110, 38). The calculated absorption spectra of optically excited states can be used to simulate ultrafast optical pump/X-ray probe experiments.  相似文献   

14.
Five mononuclear spin crossover iron(II) bis-meridional ligand complexes of the general formula [Fe(L)(2)](X)(2).solvent, have been synthesized, where X = BF(4)- or ClO(4)-; L = 2-(1-pyridin-2-ylmethyl-1H-pyrazol-3-yl)-pyrazine (picpzpz) or 2-(3-(2-pyridyl)pyrazol-1-ylmethyl)pyridine) (picpypz); solvent = MeOH or EtOH. The magnetic and structural consequences of systematic variation of meridional ligand, solvent, and anion, including a desolvated species, have been investigated. The complex [Fe(picpzpz)(2)](BF(4))(2).MeOH, 1.MeOH, displays several unique properties including a two-step spin transition with a gradual higher-temperature step ((1)T(1/2) = 197 K) and an abrupt low-temperature step with hysteresis ((2)T(1/2) = 91/98 K) and a metastable intermediate spin state below 70 K with quench-cooling. Removal of the solvent methanol results in the loss of the abrupt step and associated hysteresis (T(1/2) = 150 K). The complexes [Fe(picpzpz)(2)](BF(4))(2).EtOH (1.EtOH), [Fe(picpzpz)(2)](ClO(4))(2).MeOH (2.MeOH), [Fe(picpzpz)(2)](ClO(4))(2).EtOH (2.EtOH), and [Fe(picpypz)(2)](BF(4))(2).MeOH (3.MeOH) all show gradual one-step spin transitions with T(1/2) values in the range 210-250 K. Photomagnetic LIESST measurements on 1.MeOH reveal a near-quantitative excitation of high-spin sites and a unique two-step relaxation process related to the two-step thermal spin transition ((1)T(LIESST) = 49 K and (2)T(LIESST) = 70 K). The structural consequences of the unusual spin transition displayed by 1.MeOH have been investigated by single-crystal X-ray diffraction structural analyses between 25 and 293 K. Detailed characterization of the unit cell parameter evolution vs temperature reflects both the gradual high-temperature step and abrupt low-temperature step, including the thermal hysteresis, observed magnetically.  相似文献   

15.
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and M?ssbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.  相似文献   

16.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

17.
Spin crossover (SCO) coordination compounds that show bistability between low spin and high spin states are promising light-controllable molecular switches. Selective wavelength irradiation of the coordination centre at low temperatures is known as a light-induced excited spin state trapping (LIESST effect) and it leads to the modulation of physical properties of SCO materials on the macroscopic as well as on the molecular level. Another way to trigger the spin state conversion by light is based on the isomerization of photoactive ligand moieties. The ligand field strength is changed due to light-induced photoisomerization and, therefore, corresponding cistrans or ring-closing/ring-opening isomeric couples might exhibit different spin states at isothermal conditions. Such an approach is called as ligand driven light-induced spin change (LD LISC effect). From the application point of view, it presents a promising alternative to the LIESST effect because it can operate at room temperature. This article is focused on the most interesting iron and cobalt SCO compounds with photoisomerizable ligands and provides the overview of achieving results based on the LD LISC effect.  相似文献   

18.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

19.
Switchable molecules : The electronic configurations of the Fe center in trans‐[Fe(tzpy)2(NCS)2] in low‐spin, high‐spin, and LIESST states (LIESST=light‐induced excited spin‐state trapping) were confirmed by K‐ and L‐edge X‐ray absorption and magnetic measurements. The molecular structures at 40 K before and after irradiation are superimposed in the picture, which demonstrates a single‐crystal‐to‐single‐crystal transition by irradiation.

  相似文献   


20.
A theoretical study of the ground and excited states of peroxyacetyl nitrate (PAN), CH3C(O)OONO2, has been carried out using high level ab initio molecular orbital methods. The ground state geometry and vibrational frequencies are calculated using the coupled-cluster method. The vertical excitation energies for the lowest three excited states are calculated using the complete active space self-consistent field method along with the multireference internally contracted configuration interaction method. These results are compared with vertical excitation energies calculated with the coupled cluster equation of motion method. The calculation provides relevant insight into the origin of PAN absorption in the UV wavelength region from 200 to 300 nm. The nature of the electron transitions for these excited states is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号