首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O reveal the occurrence of consecutive replacement of water ligands by heavy water, and in this respect the complexes with n=4 and 5 are somewhat more reactive than their smaller homologs with n=1-3 as well as the larger clusters with n=6 and 7. For the latter two ions, the theory suggests the existence of isomers, such as complexes with monodentate nitrato ligands as well as solvent-separated ion pairs with a common solvation shell. The reactions observed and the ion thermochemistry are discussed in the context of ab initio calculations, which also reveal the structures of the various hydrated cation complexes.  相似文献   

2.
We use ab initio electronic structure methods to calculate the many-body decomposition of the binding energies of the OH.(H2O)n (n=2,3) complexes. We employ MP2 and CCSD(T) levels of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets and analyze the significance of the nonpairwise interactions between OH radical and the surrounding water molecules. We also evaluate the accuracy of our newly developed potential function, the modified Thole-type model, for predicting the many-body terms in these complexes. Our analysis of the many-body contributions to the OH.(H2O)n binding energies clearly shows that they are just as important in the OH interactions with water as they are for interactions in pure water systems.  相似文献   

3.
We have studied the protonated ether-(H2O)n (n = 1-3) complexes containing tetrahydrofuran, dimethyl, diethyl, dibutyl, and butylmethyl ethers using a flowing afterglow triple-quadrupole mass spectrometer. Collision-induced dissociation, CID, of all clusters with n = 1, 2 shows sequential water loss. The n = 3 cluster of dimethyl ether shows sequential water loss, while all other ether clusters display selective product formation. The CID spectra are interpreted based on known energetics, and theoretical studies of the dimethyl and diethyl ether systems.  相似文献   

4.
采用CCSD(T)/aug-cc-p VTZ//B3LYP/6-311+G(2df,2p)方法对n(H_2O)(n=0,1,2)参与HO_2+NO→HNO_3反应的微观机理和速率常数进行了研究.结果表明,由于水分子与HO_2形成的复合物(H_2O…HO_2,HO_2…H_2O)结合NO与水分子形成的复合物(NO…H_2O,ON…H_2O)的反应方式具有较高能垒和较低有效速率,其对HO_2+NO→HNO_3反应的影响远小于双体水(H_2O)2与HO_2(或NO)形成复合物然后再与另一分子反应物NO(或HO_2)的反应方式,因此n(H_2O)(n=1,2)催化HO_2+NO→HNO_3反应主要经历了HO_2…(H_2O)_n(n=1,2)+NO和NO…(H_2O)_n(n=1,2)+HO_22种反应类型.由于HO_2…(H_2O)_n(n=1,2)+NO反应的低能垒和高速率,HO_2…(H_2O)_n(n=1,2)+NO反应优于NO…(H_2O)_n(n=1,2)+HO_2反应.与此同时,由于计算温度范围内HO_2…H_2O+NO反应的有效速率常数比HO_2…(H_2O)2+NO反应对应的有效速率常数大了10~12数量级,可推测(H_2O)_n(n=1,2)催化HO_2+NO→HNO_3反应主要来自于单个水分子.此外,在216.7~298.6 K范围内水分子对HO_2+NO→HNO_3反应起显著的正催化作用,且随温度的升高有明显增大的趋势,在298.2 K时增强因子k'RW1/ktotal达到67.93%,表明在实际大气环境中水蒸气对HO_2+NO→HNO_3反应具有显著影响.  相似文献   

5.
We report studies of supersonically cooled water complexes of p- and o-aminobenzoic acid with one or two water molecules using two-color resonantly enhanced multiphoton ionization (REMPI) spectroscopy. Density functional theory calculations are carried out to identify structural minima of water complexes in the ground state. According to the calculation, water molecules are bound to both the C=O and -OH groups to form a cyclic hydrogen-bond network in the most stable isomer. Vibrational frequency calculations for the first electronically excited state of the most stable isomer agree well with the experimental observation. On the basis of this agreement, we believe that only one isomer exists in our molecular beam. The frequency shifts of a few normal modes caused by the water molecules further confirm the site of water addition. A surprising observation is that, for OABA(H2O)n complexes, abundant intermolecular vibrational modes are clearly observable in the REMPI spectra, while for PABA(H2O)n complexes, these modes are conspicuously missing. A red shift in the transition energy is observed for OABA(H2O)1, while blue shifts are observed for the rest of the complexes. This difference alludes to the relative stabilities of the water complexes of the two aminobenzoic acids in both the ground and excited electronic states. These observations will be discussed in comparison with those from the meta isomer.  相似文献   

6.
The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.  相似文献   

7.
This work provides a comparison of neutral (H2O)2Ar(n) and negatively charged (H2O)(2-)Ar(n) complexes. The excess electron stabilizes the complexes and leads to the trans to cis rearrangement within the water dimer core. In the case of small complexes (n < or = 4) the microsolvation of the dimer by argon atoms arises on the trans side with respect to the donor water molecule. The stabilization of an excess electron is enhanced by the delocalization of the electronic charge density due to microsolvation. The process of cis to trans rotation is induced by the electric field of the approaching negative charge. The interaction energy decomposition suggests a more ionic character of binding in the negatively charged complexes. The attachment of an electron is controlled by the correlation energy.  相似文献   

8.
Thermochemical parameters of carbonic acid and the stationary points on the neutral hydration pathways of carbon dioxide, CO 2 + nH 2O --> H 2CO 3 + ( n - 1)H 2O, with n = 1, 2, 3, and 4, were calculated using geometries optimized at the MP2/aug-cc-pVTZ level. Coupled-cluster theory (CCSD(T)) energies were extrapolated to the complete basis set limit in most cases and then used to evaluate heats of formation. A high energy barrier of approximately 50 kcal/mol was predicted for the addition of one water molecule to CO 2 ( n = 1). This barrier is lowered in cyclic H-bonded systems of CO 2 with water dimer and water trimer in which preassociation complexes are formed with binding energies of approximately 7 and 15 kcal/mol, respectively. For n = 2, a trimeric six-member cyclic transition state has an energy barrier of approximately 33 (gas phase) and a free energy barrier of approximately 31 (in a continuum solvent model of water at 298 K) kcal/mol, relative to the precomplex. For n = 3, two reactive pathways are possible with the first having all three water molecules involved in hydrogen transfer via an eight-member cycle, and in the second, the third water molecule is not directly involved in the hydrogen transfer but solvates the n = 2 transition state. In the gas phase, the two transition states have comparable energies of approximately 15 kcal/mol relative to separated reactants. The first path is favored over in aqueous solution by approximately 5 kcal/mol in free energy due to the formation of a structure resembling a (HCO 3 (-)/H 3OH 2O (+)) ion pair. Bulk solvation reduces the free energy barrier of the first path by approximately 10 kcal/mol for a free energy barrier of approximately 22 kcal/mol for the (CO 2 + 3H 2O) aq reaction. For n = 4, the transition state, in which a three-water chain takes part in the hydrogen transfer while the fourth water microsolvates the cluster, is energetically more favored than transition states incorporating two or four active water molecules. An energy barrier of approximately 20 (gas phase) and a free energy barrier of approximately 19 (in water) kcal/mol were derived for the CO 2 + 4H 2O reaction, and again formation of an ion pair is important. The calculated results confirm the crucial role of direct participation of three water molecules ( n = 3) in the eight-member cyclic TS for the CO 2 hydration reaction. Carbonic acid and its water complexes are consistently higher in energy (by approximately 6-7 kcal/mol) than the corresponding CO 2 complexes and can undergo more facile water-assisted dehydration processes.  相似文献   

9.
Geometries of clusters of water molecules (W(n)) and those of the LiF-W(n) (n = 1-9) complexes were optimized using the B3LYP/6-31+G** method. Geometries of the complexes up to n = 7 were also optimized using the MP2/6-31+G** approach. Only one structure of each of W(n), n = 1-5 was considered to generate the complexes with LiF while two structures, one of a cage type and the other of a prism type, were considered for n = 6-9. The LiF-W(2) complex is found to be most stable among the various complexes. The LiF-W(6) complex, where W(6) is of a cage type, is predicted to be substantially less stable than that where W(6) is of a prism type. Certain existing ambiguities regarding the most stable structures of the LiF-W(n) (n = 1-3) complexes have been resolved. The LiF molecule seems to divide the W(n) clusters in the LiF-W(n) (n = 3-6) complexes into different fragments where at least one W(2)-like fragment is present. In LiF-W(6) (cage), there is one W(2)-like fragment while in LiF-W(6) (prism), there are three W(2)-like fragments. The LiF bond length is substantially increased in going from the gas phase to the different complexes, this increase being most prominent in LiF-W(6), where W(6) is of the cage or prism type. The LiF molecule, however, does not acquire the ionic structure Li(+)F(-) in any of the complexes studied here. An appreciable amount of electronic charge is transferred from LiF to the water molecules involved in the different complexes. In this process, the Li atom gains electronic charge in some cases, while the F atom considered separately, as well as the Li and F atoms taken together, lose the same in most cases.  相似文献   

10.
Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented. The structures and possible decomposition routes of the HXeOH-(H(2)O)(n)(n = 0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe + (H(2)O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n = 0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect. Another decomposition channel of HXeOH-(H(2)O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H(2)O/Xe matrixes are assigned to the HXeOH-H(2)O and HXeOH-(H(2)O)(2) complexes. These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption.  相似文献   

11.
Density functional theory B3LYP method with 6-31++G** basis was used to optimize the geometries of the ground states for 1,2,3-triazine-(H2O)n (n=1,2,3) complexes. All calculations indicate that the 1,2,3-triazine-water complexes in the ground states have strong hydrogen-bonding interaction, and the complex having a N…H-O hydrogen bond and a chain of water molecules which is terminated by a O…H-C hydrogen bond is the most stable. The H-O stretching modes of complexes are red-shifted relative to that of the monomer. In addition, the Natural bond orbit (NBO) analysis indicates that the intermolecular charge transfer between 1,2,3-triazine and water is 0.0222e, 0.0261e and 0.0273e for the most stable 1:1, 1:2 and 1:3 complexes, respectively. The first singlet (n, π*) vertical excitation energy of the monomer 1,2,3-triazine and the hydrogen-bonding complexes of 1,2,3-triazine-(H2O)n were investigated by time-dependent density functional theory.  相似文献   

12.
三角架型配体由于其独特的配位方式而具有许多优良的物理和化学性质 ,如能稳定高氧化态的过渡金属离子[1 3] ,用作优良的电极活性物质[4] ,具有生物活性[5] 等 .因此近十余年来对该类配合物的研究一直是配位化学研究领域的一个重要部分 .但到目前为止 ,对具有三角架结构的三酰胺型开链冠醚的研究却很少 ,且主要集中于研究它与过渡金属和碱金属离子的相互作用及其性质[4,5] ,有关该类配体与稀土离子的配位形式及性质的研究则更少[6] .为了进一步研究该类配体与稀土离子的配位能力及所形成配合物的性质 ,我们参照文献 [5]方法 ,合成出配体 1 ,…  相似文献   

13.
The reaction of Ln(NO3)3.aq with K3[Cr(CN)6] and 2,2'-bipyridine (bpy) in a water/ethanol solution led to two families of complexes: 4 one-dimensional (1D) complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)3(bpy)2]n.4nH2O.3.5nbpy (Ln3+ = La, Ce, Pr, and Nd) and 10 1D complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.3.5nH2O.1.5nbpy (Ln3+ = Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu). The structures for the fourteen complexes [LaCr]n (1), [CeCr]n (2), [PrCr]n (3), [NdCr]n (4), [NdCr]n (4'), [SmCr]n (5), [EuCr]n (6), [TbCr]n (7), [DyCr]n (8), [HoCr]n (9), [ErCr]n (10), [TmCr]n (11), [YbCr]n (12), and [LuCr]n (13) have been solved. Complexes 1-4 crystallize in the orthorhombic space group Pbam and are isomorphous; complexes 4'-13 crystallize in the triclinic space group PI and are isomorphous. The X-ray structural characterization of complexes 1-4 shows the presence of a discrete decameric water cluster built around a cyclic hexameric core stabilized by the solid-state structure, which represents another new mode of association of water molecules. The Ln3+-Cr3+ magnetic interaction is negligible in 6 and 12, antiferromagnetic in 2, 4', 7, 8, 9, 10, and 11, and unresolved for 3. The complex 5 is a ferrimagnet because its magnetic studies suggest the onset of a very weak ferromagnetic three-dimensional ordering.  相似文献   

14.
Binding interactions and Raman spectra of water in hydrogen-bonded anionic complexes have been studied by using the hybrid density functional theory method (B3LYP) and ab initio (MP2) method. In order to explore the influence of hydrogen bond interactions and the anionic effect on the Raman intensities of water, model complexes, such as the negatively charged water clusters ((H2O)n-, n = 2 and 3), the water...halide anions (H2O...X-, X = F, Cl, Br, and I), and the water-metal atom anionic complexes (H2O...M-, M = Cu, Ag, and Au), have been employed in the present calculations. These model complexes contained different types of hydrogen bonds, such as O-H...X-, O-H...M-, O-H...O, and O-H...e-. In particular, the last one is a dipole-bound electron involved in the anionic water clusters. Our results showed that there exists a large enhancement in the off-resonance Raman intensities of both the H-O-H bending mode and the hydrogen-bonded O-H stretching mode, and the enhancement factor is more significant for the former than for the latter. The reasons for these spectral properties can be attributed to the strong polarization effect of the proton acceptors (X-, M-, O, and e-) in these hydrogen-bonded complexes. We proposed that the strong Raman signal of the H-O-H bending mode may be used as a fingerprint to address the local microstructures of water molecules in the chemical and biological systems.  相似文献   

15.
We report studies of supersonically cooled water complexes of m-aminobenzoic acid MABA.(H(2)O)n (n = 1 and 2) using two-color resonantly enhanced multiphoton ionization (REMPI) and UV-UV hole-burning spectroscopy. Density functional theory calculations are also carried out to identify structural minima of water complexes in the ground state. For the most stable isomers of both complexes, water molecules bind to the pocket of the carboxyl group in a cyclic hydrogen bond network. Vibrational frequency calculations for the first electronically excited state (S(1)) of these isomers agree well with the experimental observation. The addition of water molecules has a major impact on the normal mode that involves local motion of the carboxyl group, while negligible effects are observed for other normal modes. On the basis of the hole-burning experiment, two major isomers for each complex are identified, corresponding to the two conformers of the bare compound. Compared with the other two isomers of aminobenzoic acid, the red shifts of the origin bands due to water complexation in MABA are considerably larger. Similar to p-aminobenzoic acid and different from o-aminobenzoic acid, the existence of the intermolecular stretching mode is ambiguous in the REMPI spectrum of MABA.(H(2)O)n.  相似文献   

16.
New disilver(I) methanedisulphonate complexes [CH(2)(SO(3))(2)Ag(2)·L(n)] (L = PPh(3); n=2, 2a; n=3, 2b; n=4, 2c; n=5, 2d; n=6, 2e; L=P(OEt)(3); n=2, 2f; n=4, 2g; n=6, 2h) were prepared by the reaction of [CH(2)(SO(3))(2)Ag(2)], which could be synthesized from methanedisulphonic acid and Ag(2)CO(3) in water, with triphenylphosphine or triethylphosphite in dichloromethane under a nitrogen atmosphere. The solid state structures of three complexes 2c, 2d and 2f were determined by single X-ray structure analysis. Hot-wall metal organic chemical vapor deposition (MOCVD) experiments were carried out at 395 °C, 420 °C and 450 °C using 2g as precursor for the deposition of silver films, respectively. The silver film with high purity obtained at 420 °C is dense and homogeneous, which is composed of many well isolated, granular particulates spreading all over the substrate surface.  相似文献   

17.
Anionic dimethyldi(2-pyridyl)borato dimethylplatinum(II) complexes react vigorously in 3:1 RH/water mixtures to produce PtII aryl (RH = C6H6, para-F2C6H4) or hydrido PtII olefin complexes (RH = cyclo-CnH2n; n = 5,6); the Na+ cation accelerates the reaction rates dramatically.  相似文献   

18.
The effect of solvent and counter ion on the complexes of 2,5-bis(2-pyridyl)-1,3,4-oxadiazole (1) with Fe+2 and Fe+3 has been studied by electrospray ionization mass spectrometry (ESI/MS). As expected, upon ESI conditions the metal reduction proceeds, but it can be deduced that complexes with Fe+2 are favored over those with Fe+3. When methanol is used as solvent, the formation of complexes of stoichiometry 2:1 and 1:1 with counter ion attached (monovalent anion) is favored, for example, [1(2)+FeCl]+ ion. The use of methanol/water (1/1) as solvent favors the formation of complexes of stoichiometry 2:1 and 3:1, namely doubly charged [1(2)+Fe]+2 and [1(3)+Fe]+2 ions. The complexes containing anion of oxidative properties (ClO4-, NO3-), when the higher cone voltage is applied, yield unusual species [1n+FeOm]+ (n=1, 2; m=1, 2). The use of divalent counter ion (SO4(-2)) resulted in formation of complexes containing two iron cations, namely [1n+Fe2SO4]+2 (n=2, 3, 4) ions. These ions can be regarded as Fe-1 complexes bridged by a sulfate anion.  相似文献   

19.
We present adiabatic electron affinities (AEAs) and the vertical detachment energies (VDEs) of the uracil molecule interacting with one to five water molecules. Credibility of MP2 and DFT/B3LYP calculations is supported by comparison with available benchmark CCSD(T) data. AEAs and VDEs obtained by MP2 and DFT/B3LYP methods copy trends of benchmark CCSD(T) results for the free uracil and uracil-water complexes in the gas phase being by 0.20 - 0.28 eV higher than CCSD(T) values depending on the particular structure of the complex. AEAs and VDEs from MP2 are underestimated by 0.09-0.15 eV. For the free uracil and uracil-(H(2)O)(n) (n = 1,2,3,5) complexes, we also consider the polarizable continuum model (PCM) and discuss the importance of the microsolvation when combined with PCM. AEAs and VDEs of uracil and uracil-water complexes enhance rapidly with increasing relative dielectric constant (ε) of the solvent. Highest AEAs and VDEs of the U(H(2)O)(5) complexes from B3LYP with ε = 78.4 are 2.03 and 2.81 eV, respectively, utilizing the correction from CCSD(T). Specific structural features of the microsolvated uracil-(H(2)O)(n) complexes and their anions are preserved also upon considering PCM in calculations of AEAs and VDEs.  相似文献   

20.
Reaction of potassium salts of sterically demanding pyrazolates (pz = bis-3,5-tert-butylpyrazolate, pz= bis-3,5-tert-butyl-4-methylpyrazolate) with Re2O7 affords soluble eta2-pyrazolate complexes of the type [(eta2-pz)ReO3(THF)n](1: pz, n= 1 and 2: pz, n= 0). They were characterized by spectroscopic methods and by X-ray crystallography confirming the eta2-coordinate ligands. Complex 1 employing the ligand with a proton in the 4-position retains one molecule of THF, whereas the additional methyl group in 2 leads to the base-free compound 2. Compound 1 reacts with pyridine and 3,5-dimethylpyridine to form Lewis base adducts of the type [(eta2-pz)ReO3(L)](3: L = py; 4: L = 3,5-Me2py). The pronounced sensitivity towards water of these complexes is demonstrated by the reaction of 1 with one equivalent of water forming the corresponding pyrazolium perrhenate [ReO4][pzH2](5). Its solid state structure shows a hydrogen bonded dimeric assembly. Catalytic activity of 1 is established in oxygen atom transfer-reactions (OAT) from dimethylsulfoxide to triphenylphosphine, and in epoxidations of cyclooctene employing bis(trimethylsilyl) peroxide (BTSP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号