首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterobimetallic complexes comprised of W(CO)4 adducts of (N2S2)M(NO) have been isolated and characterized by nu(CO) and nu(NO)IR spectroscopies and X-ray diffraction. The molecular structures of (N2S2)M(NO) compounds (bme-dach)Co(NO), [(bme-dach)Co(NO)]W(CO)4, and [(bme-dach)Fe(NO)]W(CO)4 [bme-dach = N, N'-bis(2-mercaptoethyl)-1,4-diazacycloheptane)] find the square-pyramidal (bme-dach)M(NO) unit to serve as a bidentate ligand via the cis-dithiolato sulfurs, with a hinge angle of the butterfly bimetallic structures of ca. 130 degrees . The W(CO)4 moiety is used as a probe of the electron-donor ability of the nitrosyl complexes through CO stretching frequencies that display a minor increase as compared to analogous [(N2S2)Ni]W(CO)4 complexes. These findings are consistent with the electron-withdrawing influence of the {Co(NO)}(8) and {Fe(NO)}(7) units on the bridging thiolate sulfurs relative to Ni(2+). Also sensitive to derivatization by W(CO)4 is the NO stretch, which blue shifts by ca. 30 and 50 cm(-1) for the Co and Fe complexes, respectively. Cyclic voltammetry studies find similar reduction potentials (-1.08 V vs NHE in N, N-dimethylformamide solvent) of the (bme-dach)Co(NO) and (bme-dach)Fe(NO) free metalloligands, which are positively shifted by ca. 0.61 and 0.48 V, respectively, upon complexation to W(CO)4.  相似文献   

2.
Electrochemical, magnetic, and spectroscopic properties are reported for homoleptic divalent (M = Mn, Fe, Co, Ni, Ru) and trivalent (M = Cr, Mn, Fe, Co) metal-bis[poly(pyrazolyl)borate] complexes, [M(pzb)(2)](+/0), where pzb(-) = hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-dimethylpyrazolyl)borate (Tp), or tetrakis(pyrazolyl)borate (pzTp). Ligand field strengths in metal-pzb complexes increase as Tp < Tp < pzTp, which reflects the importance of steric rather than electronic effects on spectroscopic properties. However, metal-centered redox potentials become more negative as pzTp < Tp < Tp, which follows the electron-donating ability of the ligands. Co(III)/Co(II) and Mn(III)/Mn(II) electrode reactions are accompanied by a change in metal atom spin-state; i.e., (S = 0) [Co(pzb)(2)](+) + e(-) <==> (S = 3/2) [Co(pzb)(2)] and (S = 1) [Mn(pzb)(2)](+) + e(-) <==> (S = 5/2) [Mn(pzb)(2)]. Apparent heterogeneous electron-transfer rate constants derived from sweep-rate dependent cyclic voltammetric peak potential separations in 1,2-dichloroethane are small and decrease as pzTp > Tp > Tp for the Co(III)/Co(II) couples. Slow electron transfer is characteristic of coupled electron transfer and spin exchange. [M(Tp)(2)](+/0) redox potentials relative to values for other homoleptic MN(6)(3+/2+) couples change as M varies from Cr to Ni. For early members of the series, [M(Tp)(2)](+/0) potentials nearly equal those of complexes with aliphatic N-donor ligands (e.g., triazacyclononane, sarcophagine). However, [M(Tp)(2)](+/0) potentials approach those of [M(bpy)(3)](3+/2+) for later members of the series. The variation suggests a change in the nature of the metal-pzb interaction upon crossing the first transition row.  相似文献   

3.
Four members of the electron-transfer series [Fe(NO)(S(2)C(2)R(2))2]z (z = 1+, 0, 1-, 2-) have been isolated as solid materials (R = p-tolyl): [1a](BF4), [1a]0, [Co(Cp)2][1a], and [Co(Cp)2]2[1a]. In addition, complexes [2a]0 (R = 4,4-diphenyl), [3a]0 (R = p-methoxyphenyl), [Et(4)N][4a] (R = phenyl), and [PPh(4)][5a] (R = -CN) have been synthesized and the members of each of their electron-transfer series electrochemically generated in CH(2)Cl(2) solution. All species have been characterized electro- and magnetochemically. Their electronic, M?ssbauer, and electron paramagnetic resonance spectra as well as their infrared spectra have been recorded in order to elucidate the electronic structure of each member of the electron-transfer series. It is shown that the monocationic, neutral, and monoanionic species possess an {FeNO}6 (S = 0) moiety where the redox chemistry is sulfur ligand-based, (L)2-(L*)1-: [Fe(NO)(L*)2]+ (S = 0), [Fe(NO)(L*)(L)]0 <--> [Fe(NO)(L)(L*)]0 (S = 1/2), [Fe(NO)(L)2]- (S = 0). Further one-electron reduction generates a dianion with an {FeNO}7 (S = 1/2) unit and two fully reduced, diamagnetic dianions L2-: [Fe(NO)(L)2]2- (S = 1/2).  相似文献   

4.
Nitrosyl Metal Coordination Compounds. II. Syntheses and Properties of Cobalt and Iron Complexes of the Type M(S, S) (N, N) NO Neutral complex compounds of the type M(S, S)(N, N)NO, with M = Co, Fe; S,S = malonitrildithiolate and N,N = azomethines of biacetyl with the amines aniline (acal) 1 , p-toluidine (acto) 2 , p-chloraniline (acca) 3 , and p-anisidine (acan) 4 , have been synthesized. By menas of molar measurements, IR, ESCA, and ESR spectroscopy including magnetic measurements it was established that the cobalt complexes 1a – 4a are diamagnetic, with a 5-fold coordinated square pyramidale structure, with a formally trivalent central metal ion and a negative charged NO ligand [Co(d6)NO?]2+. Iron complexes 1b — 4b coordinated in the same manner are paramagnetic with one unpaired electron located at the iron atom. The existence of the coordination unity [Fe(d5)NO?]2+ is obvoius.  相似文献   

5.
A series of complexes of stoichiometry [MX2(dipyS)] {dipyS = bis(2–picolyl)-1,3–dithiopropane); M=Cr, Mn, Fe, Co, Ni, X=Cl; M=Ni or Cu, X=NO3} and [VOCl(dipyS)]Cl have been prepared and characterised, including the X-ray crystal structure of [Ni(ONO2)2(dipyS)]. The kinetics of the transfer of dipyS from these complexes (M=Cr, Mn, Fe, Co or Ni) to Cu2+, to form [Cu(dipyS)]2+, have been studied in MeOH. For M=Ni, the kinetics are consistent with a mechanism involving rate-limiting dissociation of the initial pyridyl—M bond. Subsequent binding of Cu2+ to the pendant pyridyl-residue (or binding Cl– to the vacant site on M) is followed by the complete transfer of dipyS from M to Cu. For M=Cr, Mn or Co, the same mechanism is believed to operate, but in these cases intermediates in the dipyS transfer to Cu2+ have been detected spectroscopically. Evidence is presented that these intermediates have Cu2+ bound to a pendant pyridyl-group on [MCl2(dipyS)] and that the subsequent complete transfer of dipyS involves rate-limiting dissociation of a M—S bond. For M=Fe, e.p.r. spectroscopy shows that the complex is a dimer in solution. However, the transfer reaction with Cu2+ involves an analogous intermediate to that with M=Cr, Mn or Co, but only at high concentrations of Cu2+. Unexpectedly, the binding of Cu2+ inhibits the transfer of dipyS from Fe to Cu. The electronic factors which give rise to this behaviour are discussed.  相似文献   

6.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

7.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

8.
The redox properties of MCl2 (M=Mn, Fe, Co) acetonitrile solvates were electrochemically and spectroscopically characterized. The three voltammogram waves at 0.86, 0.48, and 0.21 V versus SCE for FeCl(2) dissolved in MeCN are assigned as one-electron reduction potentials for [Fe(II)Cl(x)(NCMe)4-x]2-x (1相似文献   

9.
The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (~4.27 μ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.  相似文献   

10.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

11.
Yeh SW  Lin CW  Li YW  Hsu IJ  Chen CH  Jang LY  Lee JF  Liaw WF 《Inorganic chemistry》2012,51(7):4076-4087
The reversible redox transformations [(NO)(2)Fe(S(t)Bu)(2)](-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(-) ? [Fe(μ-S(t)Bu)(NO)(2)](2) and [cation][(NO)(2)Fe(SEt)(2)] ? [cation](2)[(NO)(2)Fe(SEt)(2)] (cation = K(+)-18-crown-6 ether) are demonstrated. The countercation of the {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs) functions to control the formation of the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced Roussin's red ester (RRE) [PPN](2)[Fe(μ-SR)(NO)(2)](2) or the {Fe(NO)(2)}(10) dianionic reduced monomeric DNIC [K(+)-18-crown-6 ether](2)[(NO)(2)Fe(SR)(2)] upon reduction of the {Fe(NO)(2)}(9) DNICs [cation][(NO)(2)Fe(SR)(2)] (cation = PPN(+), K(+)-18-crown-6 ether; R = alkyl). The binding preference of ligands [OPh](-)/[SR](-) toward the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) motif of dianionic reduced RRE follows the ligand-displacement series [SR](-) > [OPh](-). Compared to the Fe K-edge preedge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)(2)}(9){Fe(NO)(2)}(9) DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)(2)}(9) DNICs, the {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs and the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced RREs containing S/O/N-ligation modes display the characteristic preedge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)(2)}(10)-{Fe(NO)(2)}(10) dianionic reduced RREs and {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge preedge energy, the IR ν(NO) spectra may also be adopted to characterize and discriminate [(NO)(2)Fe(μ-S(t)Bu)](2) [IR ν(NO) 1809 vw, 1778 s, 1753 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(-) [IR ν(NO) 1674 s, 1651 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) [IR ν(NO) 1637 m, 1613 s, 1578 s, 1567 s cm(-1) (KBr)], and [K-18-crown-6 ether](2)[(NO)(2)Fe(SEt)(2)] [IR ν(NO) 1604 s, 1560 s cm(-1) (KBr)].  相似文献   

12.
13.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

14.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

15.
The complex framework [Ru(tpy)(dpk)]2+ has been used to study the generation and reactivity of the nitrosyl complex [Ru(tpy)(dpk)(NO)]3+ ([4]3+). Stepwise conversion of the chloro complex [Ru(tpy)(dpk)(Cl)]+ ([1]+) via [Ru(tpy)(dpk)(CH3CN)]2+ ([2]2+) and the nitro compound [Ru(tpy)(dpk)(NO2)]+ ([3]+) yielded [4]3+; all four complexes were structurally characterized as perchlorates. Electrochemical oxidation and reduction was investigated as a function of the monodentate ligand as was the IR and UV-vis spectroscopic response (absorption/emission). The kinetics of the conversion [4]3+/[3]+ in aqueous environment were also studied. Two-step reduction of [4]3+ was monitored via EPR, UV-vis, and IR (nu(NO), nu(CO)) spectroelectrochemistry to confirm the {RuNO}7 configuration of [4]2+ and to exhibit a relatively intense band at 505 nm for [4]+, attributed to a ligand-to-ligand transition originating from bound NO-.  相似文献   

16.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

17.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

18.
Two series of homoleptic phenolate complexes with fluorinated aryloxide ligands A2[M(OAr)4] with M=Co2+ or Cu2+, OAr-=(OC6F5)- (OArF) or [3,5-OC6H3(CF3)2]- (OAr'), A+=K (18-crown-6)+, Tl+, Ph4P+, Et3HN+, or Me4N+ have been synthesized. Two related complexes with nonfluorinated phenoxide ligands have been synthesized and studied in comparison to the fluorinated aryloxides demonstrating the dramatic structural changes effected by modification of OPh to OAr(F). The compounds [K(18-crown-6)]2[Cu(OArF)4], 1a; [K(18-crown-6)]2[Cu(OAr')4], 1b; [Tl2Cu(OArF)4], 2a; [Tl2Cu(OAr')4], 2b; (Ph4P)2[Cu(OArF)4], 3; (nBu4N)2[Cu(OArF)4], 4; (HEt3N)2[Cu(OArF)4], 5; [K(18-crown-6)]2[Cu2(mu2-OC6H5)2(OC6H5)4], 6; [K(18-crown-6)]2[Co(OArF)4], 7a; [(18-crown-6)]2[Co(OAr')4], 7b; [Tl2Co(OArF)4], 8a; [Tl2Co(OAr')4], 8b; (Me4N)2[Co(OArF)4], 9; [Cp2Co]2[Co(OAr')4], 10; and [(18-crown-6)])[Co2(mu2-OC6H5)2(OC6H5)4], 11, have been characterized with UV-vis and multinuclear NMR spectroscopy and solution magnetic moment studies. Cyclic voltammetry was used to study 1a, 1b, 7a, and 7b. X-ray crystallography was used to characterize 1b, 3, 4, 5, 6, 7a, 7b, 10, and 11. The related [MX4]2- compound (Ph4P)2[Co(OArF)2Cl2], 12, has also been synthesized and characterized spectroscopically, as well as with conductivity and single-crystal X-ray diffraction. Use of fluorinated aryloxides permits synthesis and isolation of the mononuclear, homoleptic phenolate anions in good yield without oligomerized side products. The reaction conditions that result in homoleptic 1a and 7a with OArF upon changing the ligand to OPh result in mu2-OPh bridging phenoxides and the dimeric complexes 6 and 11. The [M(OArF)4]2- and [M(OAr')4]2- anions in 1a, 1b, 3, 4, 5, 7a, 7b, 9, and 10 demonstrate that stable, isolable homoleptic phenolate anions do not need to be coordinatively or sterically saturated and can be achieved by increasing the electronegativity of the ligand.  相似文献   

19.
The syntheses, crystal structures, and magnetochemical characterization of five new iron clusters [Fe5O2(O2CPh)7(edte)(H2O)] (1), [Fe6O2(O2CBut)8(edteH)2] (2), [Fe12O4(OH)2(O2CMe)6(edte)4(H2O)2](ClO4)4 (3), [Fe12O4(OH)8(edte)4(H2O)2](ClO4)4 (4), and [Fe12O4(OH)8(edte)4(H2O)2](NO3)4 (5) (edteH4= N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine) are reported. The reaction of edteH4 with [Fe3O(O2CPh)6(H2O)3](NO3) and [Fe3O(O2CBut)6(H2O)3](OH) gave 1 and 2, respectively. Complex 3 was obtained from the reaction of edteH4 and NaO2CMe with Fe(ClO4)3, whereas 4 and 5 were obtained from the reaction of edteH4 with Fe(ClO4)3 and Fe(NO3)3, respectively. The core of 1 consists of a [Fe4(mu3-O)2]8+ butterfly unit to which is attached a fifth Fe atom by four bridging O atoms. The core of 2 consists of two triangular [Fe3(mu3-O)]7+ units linked together by six bridging O atoms. Finally, the cores of 3-5 consist of an [Fe12(mu4-O)4(mu-OH)2]26+ unit. Variable-temperature (T) and -field (H) solid-state direct and alternating current magnetization (M) studies were carried out on complexes 1-3 in the 1.8-300 K range. Analysis of the obtained data revealed that 1, 2, and 3-5 possess an S = 5/2, 5, and 0 ground-state spin, respectively. The fitting of the obtained M/N(muB) vs H/T data was carried out by matrix diagonalization, and this gave values for the axial zero-field splitting (ZFS) parameter D of -0.50 cm-1 for 1 and -0.28 cm-1 for 2.  相似文献   

20.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号