首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A validated, highly sensitive, and selective HPLC method with MS–MS detection has been developed for quantitative determination of azithromycin (AZI) in human Na2EDTA plasma. Roxithromycin (ROX) was used as internal standard. Human plasma containing AZI and internal standard was ultrafiltered through Centrifree Micropartition devices and the concentration of AZI was determined by isocratic HPLC–MS–MS. Multiple reaction monitoring mode (MRM) was used for MS–MS detection. The calibration plot was linear in the concentration range 2.55–551.43 ng mL−1. Inter-day and Intra-day precision and accuracy of the proposed method were characterized by R.S.D and percentage deviation, respectively; both were less than 8%. Limit of quantification was 2.55 ng mL−1. The proposed method was used to determine the pharmacokinetic profile of AZI (250-mg tablets).  相似文献   

2.
In the framework of developing analyses for exogenous contaminants in food matrices such as honey, we have compared data obtained by high-performance liquid chromatography coupled with mass spectrometry (LC–MS) to those provided by high-performance liquid chromatography and tandem mass spectrometry (LC–MS–MS). Initial results obtained with LC–MS showed that the technique lacked selectivity, which is why the method was validated by LC–MS–MS. This method involves a solid-phase extraction (SPE) of nitrofuran metabolites and nitrofuran parent drugs, a derivatization by 2-nitrobenzaldehyde for 17 h, and finally a clean-up by SPE. The data obtained show that the limits of detection varied between 0.2 and 0.6 μg kg−1 for the metabolites and between 1 and 2 μg kg−1 for nitrofuran parent drugs. The method was applied to different flower honeys. The results showed that nitrofurans (used as antibiotics) are consistently present in this matrix, the predominant compound being furazolidone. Figure Working bees  相似文献   

3.
4.
An LC–MS–MS-based procedure for determination in hair of 14 different drugs of abuse belonging to the classes cocaine, amphetamine-like compounds, opiates, and hallucinogens has been developed. A pressurized-liquid extraction procedure was used and proved useful for quantitative recovery of all the analytes tested. This procedure, in conjunction with a simple decontamination step, performed to avoid false-positive samples, enabled the detection of all the analytes with LOQ ranging from 1.8 to 16 pg mg?1 and accuracy varying from 85 to 111 %. The procedure was validated in accordance with the SOFT/AAFS guidelines and seems to be suitable for routine determination of the drugs tested in hair.  相似文献   

5.
6.
A rapid, sensitive, and simple HPLC–MS–MS method, with electro-spray ionization and cetirizine as internal standard (IS), has been developed and validated for simultaneous quantification of fexofenadine and pseudoephedrine in human plasma. The analytes were isolated from plasma by solid-phase extraction (SPE) on Oasis HLB cartridges. The compounds were chromatographed on an RP 18 column with a mixture of ammonium acetate (10 mm, pH 6.4) and methanol as mobile phase. Quantification of the analytes was based on multiple reaction monitoring (MRM) of precursor-to-product ion pairs m/z 502 → 466 for fexofenadine, m/z 166 → 148 for pseudoephedrine, and m/z 389 → 201 for cetirizine. The linear calibration range for both analytes was 2–1,700 ng mL−1 (r = 0.995), based on analysis of 0.1 mL plasma. Extraction recovery was 91.5 and 80.88% for fexofenadine and pseudoephedrine, respectively. The method was suitable for analysis of human plasma samples obtained 72 h after administration of a drug containing both fexofenadine and pseudoephedrine.  相似文献   

7.
8.
HPTLC silica gel plates without and with fluorescence indicator F254 in combination with n-hexane–ethyl acetate–formic acid (20:19:1, v/v/v) as a developing solvent were explored for the HPTLC–densitometric and HPTLC–MS/(MSn) analyses of flavonoids. Pre-development of the plates with chloroform–methanol (1:1, v/v) was needed for reliable HPTLC–densitometric analyses of flavonoid aglycones in the whole RF range, while 2-step pre-development (1st methanol–formic acid (10:1, v/v), 2nd methanol), that decreased background signals of formic acid adducts, was required for HPTLC–MS analyses. Optimization with conditioning of the adsorbent layer with water before development and saturation of the twin trough chamber resulted in required decrease of the RF values of studied flavonoids (flavone, apigenin, luteolin, chrysin, quercetin dihydrate, myricetin, kaempferide, kaempferol, naringenin, pinocembrin).

Detection was performed based on fluorescence quenching (on the plates with F254), natural fluorescence and after post-chromatographic derivatization with natural product reagent without or with further enhancement and stabilization of fluorescent zones with polyethylene glycol (PEG 400 or PEG 4000) or paraffin–n-hexane reagents. For all three reagents, drying temperature and time passed after drying influenced the intensity, which was increasing the first 20?min, and the stability (less than 2?h for PEGs and at least 24?h for paraffin–n-hexane) of the standards’ zones.

Optimal wavelengths for densitometric evaluation were selected based on in-situ absorption spectra scanned before and after derivatization and after stabilization. The developed method was tested via analyses of propolis, roasted coffee, rose hip, hibiscus, rosemary and sage crude extracts. To further increase the reliability of the obtained densitometric results HPTLC–MS/(MSn) analyses of all crude extracts were performed. Several phenolic and non-phenolic compounds were tentatively identified.

Some possible interferences with phenolic acids (chlorogenic acid, rosmarinic acid, protocatechuic acid, gallic acid, syringic acid, ellagic acid, trans-cinnamic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid) that are often present in the extracts together with flavonoids were also examined.  相似文献   

9.
The azaspiracids are a family of lipophilic polyether marine biotoxins that have caused a number of human intoxication incidents in Europe since 1995 after consumption of contaminated shellfish (Mytilus edulis). Levels of azaspiracids in shellfish for human consumption are monitored in accordance with EU guidelines: only shellfish with less than 160 μg kg−1 are deemed safe. The limited availability of commercially available standards for azaspiracids is a serious problem, because validated LC–MS methods are required for routine analysis of these toxins in shellfish tissues. The procedure described herein has been used for the separation and the isolation of four azaspiracid (AZA) toxins from shellfish, for use as LC–MS–MS reference materials. Five separation steps have been used to isolate azaspiracids 1, 2, 3, and 6. The purity of the toxins obtained has been confirmed by multiple mass spectrometric methods using authentic azaspiracid standards. The same techniques have been used for quantification of the toxins extracted. The isolation procedure involves several chromatographic purification techniques: solid-phase extraction (diol sorbent, 90% mass reduction, and 95 ± 1% toxin recovery); Sephadex size-exclusion chromatography (87% mass reduction and up to 95 ± 2% toxin recovery), Toyopearl HW size-exclusion chromatography (90% mass reduction and up to 92.5 ± 2.5% toxin recovery), and semi-preparative LC (78 ± 3% toxin recovery). The procedure effectively separates the toxins from the sample matrix and furnishes azaspiracid toxins (AZA1, AZA2, AZA3 and AZA6) of sufficient purity with an average yield of 65% (n = 5). Triple-quadrupole mass spectrometry was used for qualitative and quantitative monitoring of the isolation efficiency after each stage of the process. High-resolution mass spectrometric evaluation of the toxic isolated material in both positive and negative modes suggests high purity.  相似文献   

10.
A sensitive LC–MS–MS method with electrospray ionization has been developed for analysis of mirtazapine in rat plasma. After addition of diazepam as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 × 4.6 mm, 5 μm particle, ODS column with 84:16 (v/v) methanol–water containing 0.1% ammonium acetate and 0.01% glacial acetic acid as mobile phase. LC–MS–MS was performed in selected-ion-monitoring (SIM) mode using target fragment ions m/z 195.09 for mirtazapine and m/z 192.80 for the IS. Calibration plots were linear over the range of 0.516–618.8 ng mL?1. The lower limit of quantification was 0.516 ng mL?1. Intra-day and inter-day precision were better than 12.6 and 8.8%, respectively. Mean recovery of mirtazapine from plasma was in the range 87.41–90.06%; average recovery was 88.40% (RSD 3.95%). Significant gender differences between mirtazapine pharmacokinetic data were observed in this study.  相似文献   

11.
A simple, sensitive and selective LC–MS–MS method has been developed for the simultaneous determination of acyclovir and valacyclovir in human plasma. Acyclovir and valacyclovir in plasma were concentrated by solid phase extraction and chromatographed on a C18 column using a mobile phase of 0.1% formic acid: methanol (30:70% v/v). The method was validated over a linear range of 47–10,255 and 5–1,075 ng mL?1 for acyclovir and valacyclovir respectively. The LOQs were 47.6 and 5.0 ng mL?1. The validated method was applied for the quantitation of acyclovir and valacyclovir from plasma samples in a pharmacokinetic study.  相似文献   

12.
UV irradiation of a solution of aflatoxin B1 in acetonitrile resulted in three major degradation products which have been identified by LC–MS. Accurate masses and proposed molecular formulas of the degradation products—315.0868 (C17H15O6), 285.0758 (C16H13O5), and 275.0553 (C14H11O6)—were obtained with low mass error and high matching property by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF MS). Structural formulas of the photodegradation products, and the degradation pathways leading to the compounds, are proposed on the basis of the molecular formulas and MS–MS spectra. UPLC–Q-TOF MS has been recognized as a powerful analytical tool for qualitative analysis of trace materials and degradation products.  相似文献   

13.
Cortisol homeostasis is implicated in hypertension and metabolic syndrome. Two enzymes modulate cortisol availability; 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) preferentially converts inactive cortisone to cortisol, whereas 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) converts cortisol to cortisone. In contrast, 5α and 5β reductases inactivate cortisol by conversion to its tetrahydrometabolites: tetrahydrocortisol, allo-tetrahydrocortisol and tetrahydrocortisone. A subtle local increase in cortisol can be detected by measuring 24-h urine metabolites, LC–MS/MS being the reference method. The 11β-HSD2 activity is assessed based on the cortisol/cortisone ratio, and the 11β-HSD1 activity on the (tetrahydrocortisol + allo-tetrahydrocortisol)/tetrahydrocortisone ratio. To better understand hypertension and/or metabolic syndrome pathogenesis a method for simultaneous determination of cortisol, cortisone, tetrahydrocortisol, allo-tetrahydrocortisol and tetrahydrocortisone was developed and validated in an LC coupled with the new detector AB Sciex QTrap® 4500 tandem mass spectrometer. The steroids were extracted from 1 mL urine, using cortisol-D4 as internal standard. The quantification range was 0.1–120 ng/mL for cortisol and cortisone, and 1–120 ng/mL for tetrahydrometabolites, with >89 % recovery for all analytes. The coefficient of variation and accuracy was <10 %, and 85–105 %, respectively. Our LC–MS/MS method is accurate and reproducible in accordance with Food and Drug Administration guidelines, showing good sensitivity and recovery. This method allows the assessment of 11β-HSD2 and 11β-HSD1 activities in a single analytical run providing an innovative tool to explain etiology of misclassified essential hypertension and/or metabolic syndrome.  相似文献   

14.
15.
Sensitive, fast, and robust multi-methods are required for the surveillance of the contamination of the drinking water resources by organic trace contaminants. In the present work an alternative strategy using response surface methodology (RSM) was applied for assessment of the robustness of a LC–MS–MS multi-method. The analytical method was optimised by means of a central composite design including six design variables. The main object was to evaluate the significance of the RSM results with regard to robustness and to the sensitivity to the mass transitions used in the multi-method. The robustness of the multi-method was represented by the curvature of the calculated response surfaces for the response value R. Furthermore, it could be demonstrated that the RSM was sensitive to changes made to the investigated data set and was able to clearly indicate the fraction of substances, which met the defined criterion for signal-to-noise-ratio.  相似文献   

16.
A method has been developed for quantitative determination of carbonyl disinfection by-products (DBP) from aqueous samples by derivatization with 2,4-dinitrophenylhydrazine combined with high-performance liquid chromatography (HPLC) and electrospray ionization (ESI) tandem mass spectrometry (MS-MS). The effect of excess of derivatization reagent and derivatization time, the effect of buffer and dry-gas temperature in the ESI process, and the effect of focus potential and collision energy in MS measurement are shown. Major fragment ions for compound identification on the basis of collision-induced dissociation (CID) mass spectra (MS) are given, as are common fragments for screening analyses by MS experiments such as the use of precursor ion scans. Detection limits in the microg x L(-1) range could be achieved by selected ion monitoring measurements without sample preconcentration. Solid-phase extraction improved the sensitivity by a factor of 25 to 250. The applicability of the method is illustrated by DBP analyses of samples from outdoor swimming pools after chlorination. Several carbonyl compounds, e.g. aldehydes, ketones, hydroxybenzaldehyde, and dicarbonyl compounds were identified.  相似文献   

17.
This paper describes a new method for the rapid extraction and unequivocal confirmation of herbicides chlormequat and mepiquat in wheat flours and various flours utilized in infant foods. The highly automated extraction procedure is based on accelerated solvent extraction, followed by liquid chromatography-tandem mass spectrometry as a confirmatory analysis. Typical recoveries from flours and baby food samples ranged from 83 to 99% at a fortification level of 10 ppb, corresponding to the maximum residue limits established by the European Union; while relative standard deviations (RSD) were less than 10% for all samples. The limit of detection (signal-to-noise ratio = 3) of the method for the considered phenols in baby food samples are less than 0.1 μg g?1. Traces of the selected herbicides have been detected in about 50% of baby foods, bought from different Roman supermarkets and butcher shops, applying the described methodology.  相似文献   

18.
Two methods were developed for the quantitative analysis of phenolic acids in herb extracts. The methods were based on liquid chromatography–time-of-flight mass spectrometry (LC–TOFMS) and gas chromatography–mass spectrometry (GC–MS). The methods were compared in terms of their linearity, repeatability, selectivity, sensitivity and the speed of the analysis. The sensitivity was good for both methods, with limits of detection of <80 ng/ml for most of the compounds. The relative standard deviations (RSD) of the peak areas were on average 7.2% for the LC–TOFMS method and 1.4% for the GC–MS method. Both methods were found to be suitable for the determination of the target analytes, although GC–MS was better suited to the quantitative determination of compounds present at low concentrations.  相似文献   

19.
A simple, rapid, specific and sensitive liquid chromatography–tandem mass spectrometric method has been developed and validated for the simultaneous estimation of alfuzosin and dutasteride in human plasma. Both alfuzosin and dutasteride were extracted from human plasma by solid-phase extraction using terazosin and finasteride as the internal standards for alfuzosin and dutasteride, respectively. Chromatographic separation of analytes and their respective internal standards was carried out using a Hypurity C18 (50 × 4.6 mm i.d., 5 μm particle size) column followed by detection using an applied biosystems API 5000 mass spectrometer with a UPLC as the front end. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using multiple reactions monitoring that enables detection down to low nanogram levels with a total run time of 2.5 min only. The method was validated over a range of 0.25–20.0 ng mL?1 for alfuzosin and 0.1–10.0 ng mL?1 for dutasteride. The absolute recoveries for alfuzosin (65.57%), dutasteride (103.82%), terazosin (69.38%) and finasteride (102.25%) achieved from spiked plasma samples were consistent and reproducible. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Due to the short run time of 2.5 min it was possible to analyze a throughput of more than 180 human plasma samples per day. The validated method can be successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailabilty or bioequivalence studies. As an example the application of this validated method to a bioequivalence study is also illustrated.  相似文献   

20.
Here, we report a rapid and specific method based on high-performance liquid chromatography coupled with tandem mass spectrometry (LC–MS–MS) capable of quantifying six CYP450-specific probe substrates in human liver microsomal incubation mixtures simultaneously. These analytes were prepared by single-step extraction and detected in one run by switching polarity of electrospray ionization mode three times. Following optimization of the chromatographic conditions, the peaks were well separated, and retention times ranged between 2.0 and 8.4 min. The total run time for a single injection was within 9 min. This method was fully validated over linear range of 18.8–3,000.0 ng mL?1 for diclofenac, 0.8–3,000.0 ng mL?1 for dapson, 1.5–3,000.0 ng mL?1 for dextromethorphan, 2.0–4,000.0 ng mL?1 for omeprazole, 75.0–3,000.0 ng mL?1 for chlorzoxazone and 0.8–3,000.0 ng mL?1 for phenacetin using diazepam as internal standard. Samples were prepared by protein precipitation and analyzed on the LC–MS–MS equipped with ESI interface. For each analyte, inter- and intra-day precision (RSD%) were <15 % and accuracy was within 85–115 %. The specificity, precision, accuracy, stabilities and matrix effect were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号