首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
羊丹平 《中国科学A辑》1998,41(4):313-320
提出数值求解可压缩流驱动问题的一个新的特征混合元 .用一个新的混合元方法解抛物型的压力方程 .新方法有两个显著的特点 :一是混合元方程具有对称正定性 ;二是压力场与流场可以分离求解 .使用特征方法解具有强对流特点的浓度方程 .在一般性条件下 ,证明了近似解具有最优阶精度的收敛性  相似文献   

2.
1引言众所周知,最小二乘混合有限元方法具有两个显著的优点:一是不必满足经典混合元要求LBB条件,因此一般的有限元空间可供选择;二是算法系统是对称正定的,从而利于问题的求解.Pehlivanov等提出了一种最小二乘混合有限元算法求解椭圆型边值问题,并给出了H~1×H(div,·)模误差估计.之后,Cai等人把此方法推广应用到带有对流和反应项的二阶偏微分方程.近年来,最小二乘方法被应用到时间相关的问题.  相似文献   

3.
求解线性Sobolev方程的分裂型最小二乘混合元方法   总被引:2,自引:0,他引:2  
高夫征  芮洪兴 《计算数学》2008,30(3):269-282
本文通过引入适当的最小二乘极小化泛函,对一类线性Sobolev方程提出了两种分裂型最小二乘混合元格式,格式最大优点在于将耦合的方程组系统分裂成两个独立的子系统,进而极大降低了原问题求解的难度和规模,理论分析表明格式对原未知量及新引入的未知通量分别具有最优阶L2(Ω)模误差估计和次优阶H(div;Ω)模误差估计.数值试验很好的验证了这一点.  相似文献   

4.
顾海明  许秀灵 《应用数学》2002,15(1):118-122
本文研究了电磁场中关于共振现象的一类退化的椭圆问题 ,提出了最小二乘混合有限元方法 .这一方法的好处是可以去掉传统混合元空间的LBB条件所得到的系数矩阵是对称正定的 ,使得法语解更加方便 .本文得到了最小二乘混合有限元方法的L2 和H1估计 .  相似文献   

5.
郭会  张建松 《应用数学》2013,26(1):155-164
本文对拟抛物方程构造两种分裂对称正定混合元方法.通过适当选取变分形式,格式分裂成两个独立对称正定子格式,并且方法不需要验证LBB条件.收敛性分析表明方法关于变量u和引进的变量σ分别具有L 2(Ω)和H(div;Ω)范数意义下的最优收敛阶.最后,通过数值实验验证了方法的有效性.  相似文献   

6.
宋怀玲 《应用数学》2005,18(4):610-618
研究了不可压缩油水两相渗透流驱动问题.在扩散矩阵仅是半正定的假设条件下,提出了迎风混合元方法.混合元方法近似压力方程,饱和度方程的对流项用Godunov迎风格式来处理,扩散项则用推广的混合元来逼进,并推导出格式的误差估计.此种格式的优越性表现在两个方面:首先是饱和度方程的扩散矩阵仅是半正定的;二是摒弃了特征格式所限制的周期性条件,更适用于实际问题.  相似文献   

7.
提出一类二阶伪双曲型方程的新的分裂正定式混合有限元方法.给出了半离散和全离散格式误差估计及其格式的稳定性.与传统的混合元相比,所提出的格式有几个优点:首先所提出的格式能够分裂成两个独立的积分微分子格式并且不需要求解匹配方程组系统;其次不必满足LBB相容性条件.  相似文献   

8.
球面径向基函数(SBF)和多项式样条函数均为处理球面散乱数据的有效工具. 本文考虑由球面径向基函数与球面多项式函数组成的混合插值模型, 并利用最小二乘法求解该模型. 对于该插值模型, 首先, 给出带Bessel势的Sobolev空间中的Bernstein不等式, 然后利用该不等式建立逼近正定理,并进一步给出该插值工具的误差估计. 最后, 研究该插值方式(即利用最小二乘法求解混合插值模型)的稳定性.  相似文献   

9.
0 引言 多孔介质二相驱动问题的数学模型是由压力方程与浓度方程组成的偏微分方程组的初边值问题.关于该问题的数值解问题,已有大量的文献.为了得到最优的L~2-模误差估计,好多方法用混合元方法解压力方程.我们知道,混合元法得到的方程组系数矩阵是非正定的,从而解混合元比解标准元要困难得多,虽然许多人研究了混合元方法的求解问题,但到目前为止,还没有看到令人满意的好的算法.为了避开对混合元的求解,著名学者T.F.Russell考虑了用标准有限元方法解压力方程,用特征有限元方法解浓度方程的求解方法及其迭代解法,对只有分子扩散的二相驱动问题得到了最优的L~2模误差估计,对有机械弥散的一般二相驱动问题得不到最优的L~2模误差估计,同时在收敛性证明中要求压力有限元空间的指数至少是二.  相似文献   

10.
提出了定常的磁流体动力学方程的一种Galerkin-Petrov最小二乘混合元法,并导出Galerkin-Petrov最小二乘混合元解的存在性和误差估计.通过引入Galerkin-Petrov最小二乘混合有限元方法使得该方法的混合元空间之间的组合无需满足离散的Babuska-Brezzi稳定性条件,从而使得它们的混合有限元空间可以任意选取,并得到误差估计最优阶.  相似文献   

11.
A new characteristic mixed element scheme is formulated to solve numerically displacement problems of compressible fluids in porous media. A new mixed finite element method is introduced to solve the pressure equation of parabolic type, in which the mixed element system is symmetric positive definite and the pressure equation is separated from the flux equation. The modified method of characteristics is used to treat convection-dominated diffusion equations of the concentrations. The convergence with optimal accuracy is proved under the general condition. Project supported in part by China State Major Key Project for Basic Researches, Doctoral Station Foundation and TCTPF of China State Education Commission.  相似文献   

12.
A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.  相似文献   

13.
In this article, we establish a new mixed finite element procedure, in which the mixed element system is symmetric positive definite, to solve the second‐order hyperbolic equations. The convergence of the mixed element methods with continuous‐ and discrete‐time scheme is proved. And the corresponding error estimates are given. Finally some numerical results are presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
In this article, we establish a new mixed finite element procedure to solve the second-order hyperbolic and pseudo-hyperbolic integro-differential equations, in which the mixed element system is symmetric positive definite without requiring the LBB consistency condition. Convergence analysis shows that the method yields the approximate solutions with optimal accuracy in L 2(??) norm for u and in H(?div;??) norm for the flux???. Numerical experiments are given to verify the theoretical results.  相似文献   

15.
赵卫东 《计算数学》2000,22(1):83-96
1.引言多孔介质二相驱动问题的数学模型是偶合的非线性偏微分方程组的初边值问题.该问题可转化为压力方程和浓度方程[1-4].浓度方程一般是对流占优的对流扩散方程,它的对流速度依赖于比浓度方程的扩散系数大得多的Farcy速度.因此Darcy速度的求解精度直接影响着浓度的求解精度.为了提高速度的求解精度,70年代P.A.Raviat和J.M.Thomas提出混合有限元方法[5].J.DouglasJr,T.F.Russell,R.E.Ewing,M.F.Wheeler[1]-[4],[9],[12]袁…  相似文献   

16.
In this paper, we propose a splitting positive definite mixed finite element method for the approximation of convex optimal control problems governed by linear parabolic equations, where the primal state variable $y$ and its flux $σ$ are approximated simultaneously. By using the first order necessary and sufficient optimality conditions for the optimization problem, we derive another pair of adjoint state variables $z$ and $ω$, and also a variational inequality for the control variable $u$ is derived. As we can see the two resulting systems for the unknown state variable $y$ and its flux $σ$ are splitting, and both symmetric and positive definite. Besides, the corresponding adjoint states $z$ and $ω$ are also decoupled, and they both lead to symmetric and positive definite linear systems. We give some a priori error estimates for the discretization of the states, adjoint states and control, where Ladyzhenkaya-Babuska-Brezzi consistency condition is not necessary for the approximation of the state variable $y$ and its flux $σ$. Finally, numerical experiments are given to show the efficiency and reliability of the splitting positive definite mixed finite element method.  相似文献   

17.
The numerical solution of elliptic selfadjoint second-order boundary value problems leads to a class of linear systems of equations with symmetric, positive definite, large and sparse matrices which can be solved iteratively using a preconditioned version of some algorithm. Such differential equations originate from various applications such as heat conducting and electromagnetics. Systems of equations of similar type can also arise in the finite element analysis of structures. We discuss a recursive method constructing preconditioners to a symmetric, positive definite matrix. An algebraic multilevel technique based on partitioning of the matrix in two by two matrix block form, approximating some of these by other matrices with more simple sparsity structure and using the corresponding Schur complement as a matrix on the lower level, is considered. The quality of the preconditioners is improved by special matrix polynomials which recursively connect the preconditioners on every two adjoining levels. Upper and lower bounds for the degree of the polynomials are derived as conditions for a computational complexity of optimal order for each level and for an optimal rate of convergence, respectively. The method is an extended and more accurate algebraic formulation of a method for nine-point and mixed five- and nine-point difference matrices, presented in some previous papers.  相似文献   

18.
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.  相似文献   

19.
解重调和问题混合有限元方程的直接方法   总被引:1,自引:1,他引:0  
王烈衡 《计算数学》1986,8(4):417-427
§1.引言 考虑如下重调和方程的齐次边值问题: △~2w=f,在Ω中, w=?w/?v=0,在Ω上.(1.1)其中Ω是平面凸多边形区域,?Ω是Ω的边界,?/?v表示?Ω上的外法向导数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号