首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A series of substituted tetraselenafulvalenes (TSeFs) was studied in solution using 1H, 13C and 77Se NMR spectroscopy. Chemical shifts and heteronuclear coupling constant values were determined and assigned. Novel two-dimensional H(Se)C and H(C)Se triple-resonance correlation experiments were applied at natural abundance in order to accomplish 13C and 77Se signal assignments. Using this approach, all the signals were unambiguously assigned and atom connectivity was established in the studied TSeF derivatives. These experiments, allowing signal assignments of quaternary carbons, may find wide application in the study of substituted TSeF and other organoselenium compounds. To the best of our knowledge, triple-resonance experiments with proton detection have been applied to organoselenium compounds for the first time.  相似文献   

2.
The gradient pulse sequences for measurement of small long‐range couplings between heteronuclei (29Si? 13C) in natural abundance reported to date (INEPT‐(Si,C)gCOSY and INEPT‐(Si,C,Si)HMQC) suffer from significant signal loss when these nuclei (29Si, 13C) are coupled through one‐bond couplings to protons. This negative effect can be completely eliminated by using non‐gradient versions (INEPT‐(Si,C)COSY) or by switching proton decoupling off during gradient pulses (modified INEPT‐(Si,C,Si)gHMQC pulse sequence). The beneficial effects of these two approaches on the quality of the spectra are demonstrated here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
1H, 13C and 15N NMR chemical shifts and couplings (n)J(H,C) in DMSO-d(6) at 30 degrees C have been determined for 1,2-diaryl-(4E)-arylidene-2-imidazolin-5-one derivatives 1-27. Their chemical shift assignments are based on PFG DQF 1H,1H COSY, PFG 1H,13C HMQC as well as PFG 1H,13C and 1H,15N HMBC experiments. For compounds 1-10 including aryl fluorine substituent(s) also the couplings (n)J(F,C) (n = 1 - 4) are reported.  相似文献   

4.
In the course of the basic hydrolysis of four eremophilane esters isolated from Robinsonecio gerberifolius, some rearrangements, eliminations, and additions occurred. Five compounds were obtained, three of them not previously described. Additionally, a new sesquiterpene was produced by autooxidation of compound 1. The (1)H and (13)C NMR spectra of these compounds were completely assigned by utilization of HMQC, HMBC, COSY, DEPT, and NOESY techniques. The long-range coupling constants of the peroxide 10 are reported, and all its coupling constants (2)J(H, H), (3)J(H, H), and (4)J(H, H) are calculated at the B3LYP/6-31G(d,p) level of theory. Their magnitude is explained in terms of electronic delocalization and the additivity of stereoelectronic effects.  相似文献   

5.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
以异核单量子相关(HSQC)、异核多量子相关(HMQC)核磁共振理论为基础,实现了一维非选择性1H-31P HSQC、1H-31P异核单量子结合多键相关(HSQMBC)脉冲序列,并自主设计了一维非选择性1H-31P HMQC脉冲序列,研究了3种技术在峰形、灵敏度上的差异。通过对某次国际禁化武组织水平考试的水样分析发现,非选择性1H-31P HMQC方法是目前用于筛选含磷化学毒剂相关化合物的最有效方法。  相似文献   

7.
We present a new pulse sequence that detects simultaneously (n)J(C,H) and 2J(C,H) connectivities. The corresponding coherences are created along independent pathways and therefore can be separated into two different subspectra. One spectrum is to show all (n)J(C,H) connectivities and the other is to show exclusively 2J(C,H) connectivities. In contrast to the previously published 2J/(n)J experiment, this sequence detects the 2J(C,H) connectivities via a C,H,H-RELAY pathway leading to an intensification of the 2J(C,H) signals. Strictly, the 2J(C,H) spectrum does not show 2J(C,H) but 3J(H,H) coupling interactions within 13CH(k)-12CH(l) fragments. Therefore, 2J(C,H) signals can appear even if the corresponding 2J(C,H) coupling constant is zero.  相似文献   

8.
A 1H, 13C and 31P NMR study of monoethyl (HL1) and monobutyl (HL2) esters of (α‐anilinobenzyl)phosphonic acid and their metallocyclic dipalladium complexes (Pd2L4,L = L1, L2) in DMSO‐d6 was performed, based on 1D and 2D homo‐ and heteronuclear experiments including 1H,13C,31P,APT,1H–1H COSY, 1H–13C COSY, gs‐HMQC and gs‐HMBC NMR techniques. The results obtained are discussed with respect to those for some palladium(II) complexes reported for various anilinobenzylphosphonate derivatives. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Two-dimensional triple-resonance H(Si)C NMR experiments have been applied at natural abundance to assign 13C NMR signals in silylated phenols. The method showing its great potential in determining positions of hydroxyl groups is widely applicable to signal assignment and structure elucidation of synthetic and natural phenolic compounds.  相似文献   

10.
The compounds 3-oxofriedelane (1), 3beta-hydroxyfriedelane (2), 3,11-dioxofriedelane (3), 3,16-dioxofrie delane (4) and 3-oxo-12alpha-hydroxyfriedelane (5) were isolated from the hexane extract of Maytenus gonoclada Mart. (Celastraceae) leaves. Structural formula and the stereochemistry of the new pentacyclic triterpene 3-oxo-12alpha-hydroxyfriedelane (5) were established through (1)H and (13)C NMR and DEPT 135 spectral data including 2D experiments (HMBC, HMQC, COSY, and NOESY) and mass spectrometry (GC-MS).  相似文献   

11.
The structure and stereochemistry of nine steroid metabolites isolated in quantities ranging from 0.15 to 1.8 mg were determined using a variety of NMR techniques, including heteronuclear multiple bond correlation (HMBC) using broadband adiabatic 13C pulses and phase-sensitive data presentation. Testosterone, androstenedione and progesterone were oxidized with housefly cytochrome P450 6A1 enzyme reconstituted in vitro with housefly NADPH cytochrome P450 reductase and cytochrome b5. NMR analysis in CD3OD using a modified HMBC sequence as well as 2D heteronuclear single quantum correlation (HSQC), COSY and nuclear Overhauser and exchange spectroscopy (NOESY), combined with a detailed analysis of J couplings showed that hydroxylation occurs exclusively on the beta-face of the steroids, at positions 2, 12, and 15.  相似文献   

12.
There has been considerable interest over the past decade in the utilization of direct and long-range 1H- 15N heteronuclear shift correlation methods at natural abundance to facilitate the elucidation of small molecule structures. Recently, there has also been a high level of interest in the exploration of indirect covariance NMR methods. Our initial explorations in this area led to the development of unsymmetrical indirect covariance methods, which allow the calculation of hyphenated 2D NMR spectra such as 2D GHSQC-COSY and GHSQC-NOESY from the discrete component 2D NMR experiments. We now wish to report the utilization of unsymmetrical indirect covariance NMR methods for the combination of 1H- 13C GHSQC and 1H- 15N long-range (GHMBC, IMPEACH-MBC, CIGAR-HMBC, etc.) heteronuclear chemical shift correlation spectra to determine 15N- 13C correlation pathways.  相似文献   

13.
NMR spectra of molecules oriented in liquid crystals provide homo- and heteronuclear dipolar couplings and thereby the geometry of the molecules. Several inequivalent dilute spins such as 13C and 15N coupled to protons form different coupled spin systems in their natural abundance and appear as satellites in the proton spectra. Identification of transitions belonging to each spin system is essential to determine heteronuclear dipolar couplings, which is a formidable task. In the present study, using 15N-1H and 13C-1H HSQC, and HMQC experiments we have selectively detected spectra of each rare spin coupled to protons. The 15N-1H and 13C-1H dipolar couplings have been determined in the natural abundance of 13C and 15N for the molecules pyrazine, pyrimidine and pyridazine oriented in a thermotropic liquid crystal.  相似文献   

14.
We report the unambiguous assignments of the (1)H and (13)C NMR spectra of one new natural product, namely, 6,8-di-O-methyl versiconol (1) together with one known anthraquinone aversin (2) and two xanthones 5-methoxysterigmatocystin (3) and sterigmatocystin (4). These compounds were all isolated from the mangrove endophytic fungus ZSUH-36 from the South China Sea. 1D and 2D NMR experiments including COSY, HMQC and HMBC were used to elucidate the structures. Variations in the (1)H NMR spectrum of 6,8-di-O-methyl versiconol (1) were also observed in the temperature range 25-75 degrees C. In addition, the plausible biogenetic path from 1 to 2 is discussed.  相似文献   

15.
A modified version of CPMG-HSQMBC pulse scheme is presented for the measurement of long-range heteronuclear coupling constants. The method implements adiabatic inversion and refocusing pulses on the heteronucleus. Low-power composite 180° XY-16 CPMG pulse train is applied on both proton and X nuclei during the evolution of long-range couplings to eliminate phase distortions due to co-evolution of homonuclear proton-proton couplings. The pulse sequence yields pure absorption antiphase multiplets allowing precise and direct measurement of the (n)J(XH) coupling constants regardless from the size of the proton-proton couplings. The applicability of the method is demonstrated using strychnine as a model compound. The selective 1D version of the method is also presented.  相似文献   

16.
1H and 13C NMR spectroscopic data for 4-aryl-3,4-dihydro-6-methyl-2(1H)pyridone derivatives were fully assigned by a combination of one- and two- dimensional experiments (DEPT, HMBC, HMQC, COSY, NOE).  相似文献   

17.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

18.
We propose the 13C-detecting 1D DEPT long-range C-C relay to detect super long-range H-C connectivity via four bonds (1H-13C-X-X-13C, X represents 12C or heteronuclear). It is derived from the DEPT C-C relay which detects the H-C correlations via two bonds (1H-13C-13C) by setting the delays for J(CC) in the C-C relay sequence to the (LR)J(CC). This sequence gives correlation signals split by small (LR)J(CC), which seriously suffers from residual center signal. The unwanted signal is due to long-range C-H couplings ((LR)J(CH)). The expected relayed magnetization transfer 1J(CH) --> (LR)J(CC) occurs in the 1H-13C-X-(X)-13C isotopomer, whereas the unwanted signal of (LR)J(CH) comes from 1H-12C-(X)-13C isotopomers, whose population is 100 times larger than that of the 1H-13C-X-(X)-13C isotopomer. The large dispersive line of this unwanted center signal would be a fatal problem in the case of detecting small (LR)J(CC) couplings. This central signal could be removed by an insertion of BIRD pulse or X-filter. DEPT spectrum editing solved a signal overlapping problem and enabled accurate determination of particular (LR)J(CC) values. We demonstrate here the examples of structure determination using connectivity between 1H and 13C via four bonds, and the application of long-range C-C coupling constants to discrimination of stereochemical assignments.  相似文献   

19.
The structure of 3beta-hydroxyballotinone, a new labdane diterpenoid isolated from Ballota undulata, has been established by NMR spectroscopic studies. In addition, complete and unambiguous assignments of the (1)H and (13)C NMR spectra of three other already known labdanes (ballotinone, ballonigrin and ballonigrinone) isolated from the same source have been achieved. The assignments are based on 2D shift-correlated (1)H--(1)H COSY, (1)H--(13)C gHSQC [(1)J(C,H)] and (1)H--(13)C gHMBC [(n)J(C,H) (n = 2 and 3)], and NOE experiments.  相似文献   

20.
We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号