首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
In this note we show that the equation $$ - \left\{ {\left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }}} \right)^3 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }}} \right)^2 + 6i\left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }}} \right)\left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }}} \right)x_1 } \right\}u = f$$ is locally unsolvable at the origin of the coordinate system. This equation belongs to the class that generalizes the principal type to the case of weighted derivatives. The example is interesting because the weighted principal symbol is real (in this situation, equations of principal type are solvable) but the unsolvability depends on the behavior of the lower-order terms in a neighborhood of the zeros of the weighted principal symbol.  相似文献   

2.
In this paper, we consider the generalized Riemann-Hilberij problem for second order quasi-linear elliptic complex equation \[\begin{array}{l} \frac{{{\partial ^2}w}}{{\partial {{\bar z}^2}}} + {q_1}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}w}}{{\partial {z^2}}} + {q_2}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}\bar w}}{{\partial z\partial \bar z}}\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {q_3}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}w}}{{\partial z\partial \bar z}} + {q_4}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}\bar w}}{{\partial z\partial \bar z}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \gamma (z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}}),z \in G \end{array}\] satifying the boundary condition \[{\mathop{\rm Re}\nolimits} \left[ {{{\bar \lambda }_1}(z)\frac{{\partial w}}{{\partial \bar z}}} \right] = {\gamma _1}(z),{\mathop{\rm Re}\nolimits} \left[ {{{\bar \lambda }_2}(z)\frac{{\partial w}}{{\partial \bar z}}} \right] = {\gamma _2}(z),z \in \gamma {\kern 1pt} {\kern 1pt} {\kern 1pt} (2)\] Many authors (see that papers 1, 4-6) have studied the Diriohlet problem and Riemann-Hilbert problem for linear elliptic complex equation. In our papers 2, 3 we also considered the generalized Riemann-Hilbert problem of the general second order linear elliptic complex equation. We obtained the existence theorem, the explicit form of generalized solution and the sufficient and necessary conditions for the solvability of the above mentioned boundary value problem. Based on these results and applying the property of the introduced integral operators and Schauder's fixed-point principle, it can be proved that the analogous deductions in 3 also hold for the generalized Riemann-Hilber problem (1), (2) of the quasi-linear complex equation, i, e., we have the following theorem: Theorem, If the coefficients of second order quasi-linear elliptic complex equation (1) satifies some conditions then i) When index \({n_1} \ge 0,{n_2} \ge 0\), the boundary value problem (1), (2) is always solvable and the solution depends on 2 \(2({n_1} + {n_2} + 1)\) arbitrary real constants. ii) When index \({n_1} \ge 0,{n_2} < 0{\kern 1pt} {\kern 1pt} {\kern 1pt} (or{\kern 1pt} {\kern 1pt} {\kern 1pt} {n_1} < 0,{n_2} \ge 0{\kern 1pt} )\), the sufficient and necessary condition for the solvability of the above mentioned boundary value problem (1),(2) consists of \( - 2{n_2} - 1{\kern 1pt} {\kern 1pt} {\kern 1pt} ( - 2n, - 1)\) real equalities, if and only if the equalities are satisfied, the boundary value problem is solvable and the solution depends on \(2{n_1} + 1{\kern 1pt} {\kern 1pt} (2{n_2} + 1)\) arbitrary real constants. iii)When index \({n_1} < 0,{n_2} < 0\), the sufficient and necessary condition for the solvability of the above mentioned boundary value problem (1) , (2) consists of \( - 2({n_1} + {n_2} + 1)\) real equalities, if and only if the equalitieis are satisfied, the boundary-value problem is solvable. Finally, in the similar way, we may farther extend the result to the case of the nonlinear uniform elliptic complex equation.  相似文献   

3.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

4.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

5.
对构成广义Greiner算子的向量场$X_j = \frac{\partial }{\partial x_j} + 2ky_j \vert z\vert ^{2k - 2}\frac{\partial }{\partialt}$, $Y_j = \frac{\partial }{\partial y_j } - 2kx_j \vert z\vert^{2k - 2}\frac{\partial }{\partial t}$, j = 1,... ,n, x,y∈ Rn, $z = x + \sqrt { - 1} \,y$, t ∈ R, k ≥1, 得到了拟球域内和拟球域外的Hardy型不等式;建立了广义Picone型恒等式,并由此导出比文献[3]更一般的全空间上的Hardy型不等式;并在$p = 2$时建立了具最佳常数的Hardy型不等式.  相似文献   

6.
We study the Γ-convergence of the following functional (p > 2)
$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,  相似文献   

7.
By the Fourier method a solution of the equation
  相似文献   

8.
Mamedov  F.  Gasimov  J. 《Mathematical Notes》2022,112(1-2):251-270
Mathematical Notes - The paper contains the proof of the existence of two different positive solutions of the problem $$\frac{\partial}{\partial z_i}\biggl(a_{ij}(z) \frac{\partial u}{\partial...  相似文献   

9.
By means of the supersolution and subsolution method and monotone iteration technique, the following nonlinear elliptic boundary problem with the nonlocal boundary conditions is considerd. The sufficient conditions which ensure at least one solution are given. Furthermore, the estimate of the first nonzero eigenvalue for the following linear eigenproblem is obtained, that is λ_1≥2α/(nd~2).  相似文献   

10.
Consider the following nonlinear singularly perturbed system of integral differential equations &amp;\frac{\partial u}{\partial t}+f(u)+w\\ =&amp;(\alpha-au)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &amp;+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau,\\ &amp;\frac{\partial w}{\partial t}=\varepsilon[g(u)-w], and the scalar integral differential equation &amp;\frac{\partial u}{\partial t}+f(u)\\ =&amp;(\alpha-a u)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &amp;+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau. There exist standing wave solutions to the nonlinear system. Similarly, there exist standing wave solutions to the scalar equation. The author constructs Evans functions to establish stability of the standing wave solutions of the scalar equation and to establish bifurcations of the standing wave solutions of the nonlinear system.  相似文献   

11.
In this paper we study the homogenization of degenerate quasilinear parabolic equations: where a(t, y, a, λ) is periodic in (t, y).  相似文献   

12.
In this paper, we consider the stochastic heat equation of the form $$\frac{\partial u}{\partial t}=(\Delta_\alpha+\Delta_\beta)u+\frac{\partial f}{\partial x}(t,x,u)+\frac{\partial^2W}{\partial t\partial x},$$ where $1<\beta<\alpha< 2$, $W(t,x)$ is a fractional Brownian sheet, $\Delta_\theta:=-(-\Delta)^{\theta/2}$ denotes the fractional Lapalacian operator and $f:[0,T]\times \mathbb{R}\times \mathbb{R}\rightarrow\mathbb{R}$ is a nonlinear measurable function. We introduce the existence, uniqueness and H\"older regularity of the solution. As a related question, we consider also a large deviation principle associated with the above equation with a small perturbation via an equivalence relationship between Laplace principle and large deviation principle.  相似文献   

13.
In this paper, we have considered the generalized bi-axially symmetric Schr\"{o}dinger equation $$\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2} + \frac{2\nu} {x}\frac{\partial \varphi} {\partial x} + \frac{2\mu} {y}\frac{\partial \varphi} {\partial y} + \{K^2-V(r)\} \varphi=0,$$ where $\mu,\nu\ge 0$, and $rV(r)$ is an entire function of $r=+(x^2+y^2)^{1/2}$ corresponding to a scattering potential $V(r)$. Growth parameters of entire function solutions in terms of their expansion coefficients, which are analogous to the formulas for order and type occurring in classical function theory, have been obtained. Our results are applicable for the scattering of particles in quantum mechanics.  相似文献   

14.
In this paper the author considers the following nonlinear boundary value problem with nonlocal boundary conditions $[\left\{ \begin{array}{l} Lu \equiv - \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}) = f(x,u,t)} \u{|_\Gamma } = const, - \int_\Gamma {\sum\limits_{i,j = 1}^n {{a_{ij}}\frac{{\partial u}}{{\partial {x_j}}}\cos (n,{x_i})ds = 0} } \end{array} \right.\]$ Under suitable assumptions on f it is proved that there exists $t_0\in R,-\infinityt_0, at least one solution at t=t_0 at least two solutions as t相似文献   

15.
Let Ω be an open, bounded domain in \mathbbRn  (n ? \mathbbN){\mathbb{R}^n\;(n \in \mathbb{N})} with smooth boundary ∂Ω. Let p, q, r, d 1, τ be positive real numbers and s be a non-negative number which satisfies 0 < \fracp-1r < \fracqs+1{0 < \frac{p-1}{r} < \frac{q}{s+1}}. We consider the shadow system of the well-known Gierer–Meinhardt system:
$ \left \{ {l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \right. $ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right.  相似文献   

16.
Theoretical and Mathematical Physics - We study two Cauchy problems for nonlinear equations of the Sobolev type, of the form $$ \frac{\partial}{\partial t}\frac{\partial^2u}{\partial x_3^2} +...  相似文献   

17.
For a differential operator $\Omega u=\sum\limits_i,j=1^n \frac{\partial}{\partial x_i}(a_ij(x)\frac{\partial u}{\partial x_j})+\sum\limits_{i=1}^n b_i(x)\frac{\partial u}{\partial x_i}+c(x)u$ with unbounded coefficients in R^n, a standard continuous paths process with infinitesimal operator \Omega has been constructed in this paper, and the invariance of such process under a transformation group of phase space has been discussed.  相似文献   

18.
Exact solutions for Belousov-Zhabotinskii reaction-diffusion system   总被引:1,自引:0,他引:1  
Abstract. We consider the following simplified model for the Belousou-Zhabotinskii(B-Z)reaction:  相似文献   

19.
In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary-value problems for a B-elliptic equation in the form
$ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0 $ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0   相似文献   

20.
Explicit inversion formulas of Balakrishnan–Rubin type and a characterization of Bessel potentials associated with the Laplace–Bessel differential operator are obtained. As an auxiliary tool the B-metaharmonic semigroup is introduced and some of its properties are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号