首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new parallel storm surge model, the Parallel Environmental Model (PEM), is developed and tested by comparisons with analytic solutions. The PEM is a 2‐D vertically averaged, wetting and drying numerical model and can be operated in explicit, semi‐implicit and fully implicit modes. In the implicit mode, the propagation, Coriolis and bottom friction terms can all be treated implicitly. The advection and diffusion terms are solved with a parallel Eulerian–Lagrangian scheme developed for this study. The model is developed specifically for use on parallel computer systems and will function accordingly in either explicit of implicit modes. Storm boundary conditions are based on a simple exponential decay of pressure from the centre of a storm. The simulated flooding caused by a major Category 5 hurricane making landfall in the Indian River Lagoon, Florida is then presented as an example application of the PEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
An eigenvalue method considering the membrane vibration of wrinkling out-of-plane deformation is introduced, and the stress distributing rule in membrane wrinkled area is analyzed. A dynamic analytical model of rectangular shear wrinkled membrane and its numerical analysis approach are also developed. Results indicate that the stress in wrinkled area is not uniform, i.e. it is larger in wrinkling wave peaks along wrinkles and two ends of wrinkle in vertical direction. Vibration modes of wrinkled membrane are strongly correlated with the wrinkling configurations. The rigidity is larger due to the heavier stress in the part of wrinkling wave peaks. Therefore, wave peaks are always located at the node lines of vibration mode. The vibration frequency obviously increases with the vibration of wave peaks.  相似文献   

3.
Knitting structures make plain knitted fabric different from woven fabric. With the aid of a micro-constitutive model the buckling of a knitted fabric sheet subjected to simple shear in an arbitrary direction is investigated. The large deformation of the fabric sheet in its critical configuration is considered. The theory of stability for finite deformations is applied to the analysis. All the stress boundary conditions of the knitted fabric sheet are satisfied. An equation for determining the buckling direction angle is derived. It is shown that there are two possible buckling modes: a flexural mode and a barreling mode. The buckling conditions for the two modes are also obtained, respectively. A numerical calculation reveals that only the flexural mode can occur, which agrees with experimental observations.  相似文献   

4.
In this paper, a gradient-enhanced 3-D phenomenological model for shape memory alloys using the non-local theory is developed based on a 1-D constitutive model. The method utilizes a non-local field variable in its constitutive framework with an implicit gradient formulation in order to achieve results independent of the finite element discretization. An efficient numerical approach to implement the non-local gradient-enhanced model in finite element codes is proposed. The model is used to simulate stress drop at the onset of transformation, and its performance is evaluated using different experimental data. The potential of the presented numerical approach for behavior of shape memory alloys in eliminating mesh-dependent simulations is validated by conducting various localization problems. The numerical results show that the developed model can simulate the observed unstable behaviors such as stress drop and deviation of local strain from global strain during nucleation and propagation of martensitic phase.  相似文献   

5.
6.
A rate-dependent, continuum damage model is developed for brittle materials under dynamic loading. This model improves on the approach (ISOSCM) of [Addessio, F.L., Johnson, J.N., 1990. A constitutive model for the dynamic response of brittle materials. Journal of Applied Physics 67, 3275–3286] in several respects. (1) A new damage surface is found by applying the generalized Griffith instability criterion to the dominant crack (having the most unstable orientation), rather than by averaging the instability condition over all crack orientations as done previously. The new surface removes a discontinuity in the damage surface in ISOSCM when the pressure changes sign. (2) The strain due to crack opening is more consistent with crack mechanics, with only the tensile principal stresses contributing to the crack opening strain. This is achieved by incorporating a projection operator in the equation for the crack opening strain. One consequence of incorporating the projection operator is a prediction of shear dilatancy, which is not accounted for in ISOSCM. (3) The evolution of damage, which is based on the energy-release rate for the dominant crack, has a physical basis, whereas in the previous approach the damage growth rate was assumed to be an exponential function of the distance from the stress state to the damage surface without specific physical justification.An implicit algorithm has been developed so that a larger time step can be used than with the explicit algorithm used in ISOSCM. The numerical results of a silicon carbide (SiC) ceramic under several loading paths (hydrostatic tension/compression, uniaxial strain, uniaxial stress, and shear) and strain rates are presented to illustrate the main features of the model.  相似文献   

7.
In the present paper, a simple membrane model based on the wrinkle strain approach is revisited with the aim of examining how the material elastic constants affect the static response of anisotropic membranes when wrinkling is taken into account. Employing the polar method, we analyze the role played by the polar moduli, which enable expressing the elasticity matrix components of an anisotropic material in terms of its invariant quantities. With reference to orthotropic materials, we first address the issue of membrane susceptibility to wrinkling by investigating the influence of the three polar parameters characterizing the anisotropic part of the constitutive law. The stress and strain states at any given point in a wrinkled membrane are analyzed by searching for explicit expressions for the principal values of stress and wrinkle strain. Finally, a comparison between our results and those obtained by a numerical solution available in the literature is made in the basic case of a membrane subjected to a pure shear strain state.  相似文献   

8.
When a crack is lodged in an inclusion, both difference between the modulus of the inclusion and matrix material and stress-free transformation strain of the inclusion will cause the near-tip stress intensity factor to be greater (amplification effect) or less (shielding or toughening effect) than that prevailing in a homogeneous material. In this paper, the inclusion may represent a second phase particle in composites and a transformation or microcracked process zone in brittle materials, which may undergo a stress-free transformation strain induced by phase transformation, microcracking, thermal expansion mismatch and so forth. A close form of solution is derived for predicting the toughening (or amplification) effect. The derivation is based on Eshelby equivalent inclusion approach that provides rigorous theoretical basis to unify the modulus and transformation contributions to the near-tip field. As validated by numerical examples, the developed formula has excellent accuracy for different application cases.  相似文献   

9.
大型引射筒呼吸振动破坏机理的实验和模拟研究   总被引:1,自引:0,他引:1  
针对某大型引射筒结构,通过有限元模拟分析,找到了对应于纵向裂纹的引射筒花瓣状呼吸振动模态及其频率;应用动应力分析,发现引起该引射筒破坏的频率主要集中在200~300 Hz的低频段.并进行了相关的模态试验,得到了典型的呼吸振动模态及频率,与计算结果进行了对比;结果表明计算与试验符合得很好,验证了数值建模与分析的合理性.  相似文献   

10.
An elastic section model is proposed to analyze some characteristic issues of the cable-supported bridge dynamics through an equivalent planar multi-body system. The quadratic non-linearities of the four-degree-of-freedom model essentially describe the geometric coupling which may strongly characterize the dynamic interactions of the bridge deck and a pair of identical suspension cables (hangers or stays). The linear modal solution shows that the flexural and torsional modes of the deck (global modes) typically co-exist with symmetric or anti-symmetric modes of the cables (local modes). The combinations of parameters which realize remarkable 2:1:1 internal resonance conditions among one of the global modes (with higher natural frequency) and two local modes (with lower and close natural frequencies) are obtained by virtue of a multiparameter perturbation method. The non-linear response of the resonant systems shows that the global deck motion – directly forced at primary resonance by an external harmonic load – can parametrically excite the local cable motion, when the deck vibration amplitude overcomes the critical value at which a period-doubling bifurcation occurs. The relevant effects of both viscous damping and internal detuning on the instability boundaries are parametrically investigated. All the internal resonance conditions as well as the critical vibration amplitudes are expressed as an explicit, though asymptotically approximate, function of the structural parameters.  相似文献   

11.
Polycarbonate is an amorphous polymer which exhibits a pronounced strength-differential effect between compression and tension. Also strain rate and temperature influence the mechanical response of the polycarbonate. The concept of stress mode dependent weighting functions is used in the proposed model to simulate the asymmetric effects for different loading speeds. In this concept, an additive decomposition of the flow rule is assumed into a sum of weighted stress mode related quantities. The characterization of the stress modes is obtained in the octahedral plane of the deviatoric stress space in terms of the mode angle, such that stress mode dependent scalar weighting functions can be constructed. The resulting evolution equations are updated using a backward Euler scheme and the algorithmic tangent operator is derived for the finite element equilibrium iteration. The numerical implementation of the resulting set of constitutive equations is used in a finite element program for parameter identification. The proposed model is verified by showing a good agreement with the experimental data. After that the model is used to simulate the laser transmission welding process.  相似文献   

12.
随机载荷是工程结构在服役中经常承受的一种复杂的载荷形式,通常采用统计学特性对其进行描述。对随机载荷作用下的结构进行拓扑优化设计是一项极具挑战性的工作,其主要难点在于,(1) 传统隐式拓扑优化方法的设计变量数巨大,且用于结构动态性能拓扑优化问题时存在虚假模态等数值不稳定问题; (2) 对结构的随机动力响应统计量及其灵敏度进行计算需要极大的计算量; (3) 隐式拓扑优化框架下的分析模型与优化模型强耦合,导致结构有限元模型具有极高的自由度,进一步加剧了上述困难。本文基于移动可变形组件框架和虚拟激励法理论,提出了一种平稳随机载荷作用下结构的显式拓扑优化设计方法。通过将一系列可移动和可变形的结构组件作为优化的基础单元,实现了使用少量设计变量描述结构拓扑构型的目的。采用虚拟激励法、自由度删除技术和模态位移法有效降低了对结构进行随机振动分析和灵敏度分析的计算量。在此基础上,以结构柔顺度的标准差为目标函数、以设计域内实体材料的体积为约束条件,实现了限带白噪声作用下结构的拓扑优化设计,并通过数值算例验证了本文方法的有效性。  相似文献   

13.
Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as “explicit” gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting numerical framework is complicated. An “implicit” scalar gradient model was thus developed in Peerlings [Peerlings, R.H.J., 2007. On the role of moving elastic–plastic boundaries in strain gradient plasticity. Model. Simul. Mater. Sci. Eng. 15, 109–120] that has only C0 continuity requirements and its implementation is straightforward. However, both explicit and implicit scalar gradient models can be problematic when the effective plastic strains do not have smooth profiles. To address this limitation, an implicit tensorial gradient model is proposed in this paper based on the generalized micromorphic framework. It is also demonstrated that the scalar and tensorial implicit gradient models give similar results when the effective plastic strains fluctuate smoothly.  相似文献   

14.

A numerical analysis is made to analyze the variable porosity and thermal dispersion effects on the vortex mode of instability of a horizontal natural convection boundary layer flow in a saturated porous medium. The porosity of the medium is assumed to vary exponentially with distance from the wall. In the base flow, the governing equations are solved by using a suitable variable transformation and employing an implicit finite difference Keller Box method. The stability analysis is based on the linear stability theory and the resulting eigenvalue problem is solved by the local similarity approximations. The results indicate that both effects increase the heat transfer rate. In addition, the thermal dispersion effect stabilizes the flow to the vortex mode of disturbance, while the variable porosity effect destabilizes it.

  相似文献   

15.
The paper presents a new finite element (FE) model for the stress analysis of soft solids with a growing mass based on the work of Lubarda and Hoger (2002). Contrary to the traditional numerical methods emphasizing on the influence of growth on constitutive equations, an equivalent body force is firstly detected, which is resulted from the linearization of the nonlinear equation and acts as the driver for material growth in the numerical aspect. In the algorithm, only minor correction on the traditional tangent modulus is needed to take the growth effects into consideration and its objectivity could be guaranteed comparing with the traditional method. To solve the resulted equation in time domain, both explicit and implicit integration algorithms are developed, where the growth tensor is updated as an internal variable of Gauss point. The explicit updating scheme shows higher efficiency, while the implicit one seems to be more robust and accurate. The algorithm validation and its good performance are demonstrated by several two-dimensional examples, including free growth, constrained growth and stress dependent growth.  相似文献   

16.
The work in this paper is directed at developing correction terms for a truncated structural dynamic model, which includes the effect on the structural response of both low and high frequency unmodelled vibration modes. The proposed model correction approach considers the corrected truncated model that only takes into account resonant modes within the bandwidth of interest and the optimised correction terms. The proposed approach is in contrast to the standard model correction approach that normally utilises a feedthrough correction term, taking into account only the unmodelled high frequency modes, while including all low frequency resonant modes into the truncated model. Thus, when one only interested in controlling vibration associated with a specified bandwidth of interest, the order of the corrected truncated model can be kept sufficiently low since the model does not have to include low and high frequency modes, leading to less complicated control design problems. Such active control within the specified bandwidth can be crucial for control tasks in the vibration minimisation at localised structural regions or in the noise reduction due to some coupled structural–acoustic modes. The procedures for calculating the optimal correction terms which include the lower and higher order mode contributions are outlined for both analytical and experimental models, allowing the procedures to be used for a wide range of theoretical and practical applications.  相似文献   

17.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The behaviour of a self-piercing riveted connection was investigated experimentally and numerically. An extensive experimental programme was conducted on elementary riveted joints in aluminium alloy AA6060 in two different tempers, T4 and T6. The experimental programme was focused on the influence of important model parameters such as thickness of the plates, geometry of the specimens, material properties of the plates and loading conditions. An accurate 3D numerical model of different types of riveted connections subjected to various loading conditions was generated based on the results of the numerical simulation of the riveting process. A new algorithm was generated in order to transfer all the information from the 2D numerical model of the riveting process to the 3D numerical model of the connection. Thus, the 3D model was initialized with the proper deformed shape and the current post-riveting stress–strain state. The residual stresses and the local changes in material properties due to the riveting process were an important factor in order to get the correct structural behaviour of the model. The simulations have been carried out using the explicit finite element code LS-DYNA. The model was validated against the experimental results in order to get the correct deformation modes and the force–displacement characteristics. The numerical force–displacement curves fitted the experimental ones with reasonable accuracy. Furthermore, the model seemed to be able to describe the correct structural behaviour and thus the failure mechanisms of the self-piercing riveted connections.  相似文献   

19.
Nonlinear modal interactions have recently become the focus of intense research in micro-resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. Understanding and controlling nonlinear coupling between vibrational modes is critical for the development of advanced micromechanical devices. This article aims to theoretically investigate the influence of antisymmetry mode on nonlinear dynamic characteristics of electrically actuated microbeam via considering nonlinear modal interactions. Under higher-order modes excitation, two nonlinear coupled flexural modes to describe microbeam-based resonators are obtained by using Hamilton’s principle and Galerkin method. Then, the Method of Multiple Scales is applied to determine the response and stability of the system for small amplitude vibration. Through Hopf bifurcation analysis, the bifurcation sets for antisymmetry mode vibration are theoretically derived, and the mechanism of energy transfer between antisymmetry mode and symmetry mode is detailed studied. The pseudo-trajectory processing method is introduced to investigate the influence of external drive on amplitude and bifurcation behavior. Results show that nonlinear modal interactions can transit vibration energy from one mode to nearby mode. In what follows, an effective way is proposed to suppress midpoint displacement of the microbeam and to reduce the possibility of large deflection. The quantitative relationship between vibrational modes is also obtained. The displacement of one mode can be predicted by detecting another mode, which shows great potential of developing parameter design in MEMS. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.  相似文献   

20.
Based on the theory of laminated plates and applying the method in Hamiltonian state space, the propagation of flexural waves and vibrations in the strip plate covered with a layer are investigated. The boundaries at the two lateral sides are free of traction. According to the character of solar panel, the existence of all kinds of localized vibration modes and wave propagation modes is analyzed. By using eigenfunction expansion method, the dispersion relations of waveguide modes in the strip plate covered with a layer are derived. Through the numerical examples of solar panel, the existence of all kinds of vibration modes and propagating modes is analyzed. The dispersion curves of the strip plate covered with a layer under different parameters are presented and analyzed. The effects of the properties of the covering layer on the propagation of flexural waves are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号