首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single-well chemical tracer test (SWCTT) has emerged in the past decades as a method for measuring oil saturation prior to and/or after EOR operations, to measure the recovery performance in-situ. To use this technology, the partition coefficients of the selected tracers are essential for estimating the level of residual oil at the targeted single well. Commonly, injection of short chain alcohols and ethyl acetate, a reactive tracer, is carried out for the tracer slug, mainly based on site-specific reservoir conditions, to accurately determine the level of oil saturation in-situ. However, injection of ethyl formate has been less common due to its fast hydrolysis rate under elevated temperature, which increases the challenges in data interpretation. Therefore, a systematic study for using ethyl formate under mid-range temperature \((<60\,^{\circ }\hbox {C})\), as commonly found in mature oil field in the USA, shows the potential to be applied for SWCTT. As part of the design effort for a series of EOR field tests to manage the project risk, we particularly assessed the relationships between the partition coefficients of reactive tracers and subsurface conditions such as salinity, temperatures, type of electrolytes, and the equivalent alkane carbon number (EACN) of the crude oil experiments was performed under various reservoir conditions as a function of actual site characteristics at the targeted high saline formations. In brief, our data clearly show that the (oil/water) partition coefficient of ethyl formate increases steadily with increasing NaCl concentrations, ranging from 10,000 (0.17 M) to 250,000 mg/L (4.28 M). A similar upward trend was observed for increasing temperature between 25 and \(52\,^{\circ }\hbox {C}\); however, the partition coefficient decreases inversely with increasing the crude oil EACN over the range from 8 to 12, which are common for domestic oil samples. It was also showed that brine with high NaCl concentration yielded higher partition coefficients. In contrast, brine with high \(\hbox {CaCl}_{2}\) and \(\hbox {BaCl}_{2}\) concentration yielded lower values. And \(\hbox {MgCl}_{2}\) performed somewhat unusual trend in our tests. These results further indicate that the partition coefficient of the reactive tracer, ethyl formate, is sensitive to change in salinity, temperatures, type of electrolytes and EACN, as observed for other chemical tracers. In addition, based on the hydrolysis rate of ethyl formate under various reservoir conditions, the appropriate window of shut-in time can be pre-determined before initiating the field test. We believe that the ability of better understanding the partition coefficients and predicting the shut-in time beforehand could drastically reduce the risks of SWCTT operations.  相似文献   

2.
Nonlinear Dynamics, Psychology, and Life Sciences -  相似文献   

3.
Xu  H. J.  Zhang  Q. G.  Debenest  G. 《Transport in Porous Media》2021,140(3):625-627
Transport in Porous Media - The theme of coupling problems for adsorption, absorption and thermochemical transport in porous media is very important for engineering applications. Based on the...  相似文献   

4.
5.
6.
This paper presents a new technique for computing the effective permeability on a coarse scale. It is assumed that the permeability is given at a fine scale and that it is necessary to reduce the number of blocks in the reservoir model. Traditional upscaling methods depend on local boundary conditions. It is well known that the permeability may depend heavily on the local boundary condition chosen. Hence the estimate is not stable. We propose to compute a coarse scale permeability field that minimises the error, measured in a global norm, in the velocity and pressure fields. This leads to stable problems for a large number of reservoirs. We present several algorithms for finding the effective permeability values. It turns out that these algorithms are not significantly more computational expensive than traditional local methods. Finally, the method is illustrated by several numerical experiments.  相似文献   

7.
This fact is well known that during any scenario of production, asphaltene deposition in porous media has a substantial effect on oil flow. But a clear understanding of asphaltene deposition mechanisms can help to minimize asphaltenic problem in oil-bearing formations. In this study, the experimental results of three dynamic CO2 miscible injection tests were investigated. Regarding the effects of adsorption, mechanical entrapment, and sweeping mechanisms on permeability behavior, a mathematical mass and permeability variation model were developed. According to the experimental results asphaltene deposition causes a 70% loss of sand stone initial permeability while the loss is significantly low in carbonate cores, about 30%. The model validation shows that the main particulate processes of Asphaltene deposition in sandstone cores are the cake forming and adsorption while in the case of carbonate cores, are the gradual pore blocking and pore sweeping. Obtained results from mass model provide that entrainment and deposition coefficients in square mass model lead to a more flexible trend than the linear variation of general model.  相似文献   

8.
9.
10.
The permeability of coalbed methane reservoirs may evolve during the recovery of methane and injection of gas, due to the change of effective stress and gas adsorption and desorption. Experimental and numerical studies were conducted to investigate the sorption-induced permeability change of coal. This paper presents the numerical modeling part of the work. It was found that adsorption of pure gases on coal was well represented by parametric adsorption isotherm models in the literature. Based on the experimental data of this study, adsorption of pure \(\hbox {N}_2\) was modeled using the Langmuir equation, and adsorption of pure \(\hbox {CO}_2\) was well represented by the N-Layer BET equation. For the modeling of CO \(_2\) & N \(_2\) binary mixture adsorption, the ideal adsorbed solution (IAS) model and the real adsorbed solution (RAS) model were used. The IAS model estimated the total amount of mixture adsorption and the composition of the adsorbed phase based on the pure adsorption isotherms. The estimated total adsorption and adsorbed-phase composition were very different from the experimental results, indicating nonideality of the CO \(_2\) –N \(_2\) –Coal-adsorption system. The measured sorption-induced strain was linearly proportional to the total amount of adsorption despite the species of the adsorbed gas. Permeability reduction followed a linear correlation with the volumetric strain with the adsorption of pure \(\hbox {N}_2\) and the tested CO \(_2\) & N \(_2\) binary mixtures, and an exponential correlation with the adsorption of pure \(\hbox {CO}_2\) .  相似文献   

11.
In this themed issue of Acta Mechanica Solida Sinica (AMSS),leading experts and researchers are joining together to celebrate Professor Tongxi Yu's 80th birthda...  相似文献   

12.
13.
14.
15.
16.
Shouwen Yu,emeritus Professor of Applied Mechanics at Tsinghua University,was born on May 4,1939 in Xianyou County,Fujian Province of China.From 1955 to 1958,he studied as an undergraduate  相似文献   

17.
18.
Experimental Mechanics - The dynamic behavior of miniature and high-compliance structures is critical for their performance. However, their low stiffness and inertia bring significant challenges to...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号