首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V. Tahouneh  M. H. Naei 《Meccanica》2014,49(1):91-109
This paper is motivated by the lack of studies in the technical literature concerning to the three-dimensional vibration analysis of bi-directional FG rectangular plates resting on two-parameter elastic foundations. The formulations are based on the three-dimensional elasticity theory. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. This paper presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D FGM that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D FGM.  相似文献   

2.
In this paper, three-dimensional free vibrations analysis of a four-parameter functionally graded fiber orientation cylindrical panel is presented. The panel is simply supported at the edges and assumed to have an arbitrary variation of fiber orientation in the radial direction. A generalization of the power-law distribution presented in literature is proposed. Symmetric and asymmetric fiber orientation profiles are studied in this paper. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain the natural frequency. The main contribution of this work is to illustrate the influence of the power-law exponent, of the power-law distribution choice and of the choice of the four parameters on the natural frequencies of continuous grading fiber orientation cylindrical panels. Numerical results are presented for a cylindrical panel with arbitrary variation of fiber orientation in the shell’s thickness and compared with discrete laminates composite panels. It is shown maximum natural frequencies will be obtained by using symmetric fiber orientation profiles.  相似文献   

3.
This research investigates three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced (CGFR) cylindrical panels resting on Pasternak foundations by using generalized power-law distribution. The functionally graded orthotropic panel is simply supported at the edges, and it is assumed to have an arbitrary variation of matrix volume fraction in the radial direction. A four-parameter power-law distribution presented in literature is proposed. Symmetric and asymmetric volume fraction profiles are presented. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are solved by generalized differential quadrature method, and natural frequency is obtained. The fast rate of convergence of the method is demonstrated, and to validate the results, comparisons are made with the available solutions for functionally graded isotropic shells with/without elastic foundations. The effect of the elastic foundation stiffness parameters and various geometrical parameters on the vibration behavior of the CGFR cylindrical panels is investigated. This work mainly contributes to illustrate the influence of the four parameters of power-law distributions on the vibration behavior of functionally graded orthotropic cylindrical panels resting on elastic foundation. This paper is also supposed to present useful results for continuous grading of matrix volume fraction in the thickness direction of a cylindrical panel on elastic foundation and comparison with similar discrete laminated composite cylindrical panel.  相似文献   

4.
This paper deals with the non-linear response of sandwich curved panels exposed to thermomechanical loadings. The mechanical loads consist of compressive/tensile edge loads, and a lateral pressure while the temperature field is assumed to exhibit a linear variation through the thickness of the panel. Towards obtaining the equations governing the postbuckling response, the Extended Galerkin’s Method is used. The numerical illustrations concern doubly curved, circular cylindrical and as a special case, flat panels, all the edges being simply supported. Moveable and immoveable tangential boundary conditions in the directions normal to the edges are considered and their implications upon the thermomechanical load-carrying capacity are emphasized. Effects of the radii of curvature and of initial geometric imperfections on the load-carrying capacity of sandwich panels are also considered and their influence upon the intensity of the snap-through buckling are discussed. It is shown that in special cases involving the thermomechanical loading and initial geometric imperfection, the snap-through phenomenon can occur also in the case of flat sandwich panels.  相似文献   

5.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

6.
An approximate analysis for free vibration of a laminated curved panel (shell) with four edges simply supported (SS2), is presented in this paper. The transverse shear deformation is considered by using a higher-order shear deformation theory. For solving the highly coupled partial differential governing equations and associated boundary conditions, a set of solution functions in the form of double trigonometric Fourier series, which are required to satisfy the geometry part of the considered boundary conditions, is assumed in advance. By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions, an approximate solution, capable of providing a reliable prediction for the global response of the panel, is obtained. Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.  相似文献   

7.
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.  相似文献   

8.
Static and transient responses of a thin cylindrical panel constrained from motion along its straight edges and simply supported along its curved edges are treated analytically. Independent of modulus, and for a range of geometric parameters, static deformation along the panel’s circumference from a uniform radial pressure exhibits an indentation. This indentation does not appear in transient response of the panel from an impulse of short duration. Extensional boundary constraints strongly affect peak stress in static and transient response.  相似文献   

9.
The geometrical non-linear behavior a curved sandwich panel with a stiff or compliant core when subjected to a pressure load using the Extended High-Order Sandwich Panel theory (EHSAPT), is presented. The formulation follows the EHSAPT procedure where the in-plane. i.e circumferential rigidity of the core is considered and the distribution of the displacements through the depth of the core are presumed. These displacement distributions are the closed-form solutions of the 2D governing equations of the curved core without circumferential rigidity that appear in the HSAPT curved sandwich panel model. The mathematical formulation includes the field equations along with the appropriate boundary and continuity conditions that take into account the high-order stress resultants in the core due to the presumed distributions. Finally a numerical study is conducted for a panel loaded by a distributed pressure at the upper face sheet. It reveals that the post-buckling response of a curved sandwich panels is associated with shallow to deep wrinkling deformations of the upper face sheet in the case of a simply-supported panel or a general non-linear pattern without wrinkles in the case of pinned supports with a short span. In both cases a stable post-buckling response is observed similar to that of a plate one.  相似文献   

10.
Summary This work presents an exact piezothermoelastic solution of infinitely long, simply supported, cylindrically orthotropic, piezoelectric, radially polarised, circular cylindrical shell panel in cylindrical bending under thermal and electrostatic excitation. The general solution of the governing differential equations is obtained by separation of variables. The displacements, electric potential and temperature are expanded in appropriate Fourier series in the circumferential coordinate to satisfy the boundary conditions at the simply-supported longitudinal edges. The governing equations reduce to Euler-Cauchy type of ordinary differential equations. Their general solution involves six constants for each Fourier component. These are solved from the algebraic equations obtained by satisfying the boundary conditions at the lateral surfaces. The solution of the inverse problem of inferring the applied temperature field from the given measured distribution of electrical potential difference between the lateral surfaces of the shell has also been presented. Numerical results are presented for typical thermal and electrostatic loadings for various values of radius to thickness ratio.  相似文献   

11.
A detailed investigation of the phenomenon of mode jumping in compressed struts on stiffening foundations and elastic plates of varying lengths is performed, with emphasis on the effects of altering boundary conditions. The variety of possible modal interactions is presented in a concise form using the parameter space of Arnol'd tongues, borrowed from non-linear dynamical systems theory. For the strut system, a full range of end conditions from simply supported to clamped is examined. For the plate, simply supported and clamped flexural conditions along both long (unloaded) and short (loaded) edges are considered, together with in-plane conditions ranging from free to pull in, to fully restrained. For each system, simply supported end conditions are found to provide protection against early mode jumping in a so-called “safety envelope”, but this is eroded as the end conditions are systematically altered from simply supported to clamped. For the plate system, mode jumping is induced at an earlier stage in the loading process by restricting the long (unloaded) edges against in-plane movement, but is delayed by clamping the same edges against rotation.  相似文献   

12.
In this paper, natural frequencies characteristics of a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on three-dimensional equations of elasticity is considered. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions with power law functions. Effects of volume fraction distribution and FGM configuration on the natural frequencies of a simply supported cylinder are analyzed. Also, the effects of length and thickness of the cylinder are considered for different material distribution profiles. Three-dimensional equations of motion are used and the eigen value problem is developed based on direct variational method. Finite element method with graded material characteristics within each element of the structure is used for solution. The study shows that the 2D-FGM cylinder exhibit interesting frequency characteristics when the constituent volume fractions and its configuration are varied.  相似文献   

13.
Edge-compression fixture for buckling studies of corrugated board panels   总被引:2,自引:0,他引:2  
A test fixture, developed for evaluating the preand postbuckling response of simply supported, nearly flat, rectangular corrugated board panels subjected to edge compression is evaluated. The test fixture enables loading of panels into the postbuckling regime until collapse. The shadowmoiré method verified that buckling in the first mode occurred, and that there was symmetry of the adge-boundary conditions. Through an iterative regression model, experimental curves of load versus out-of-plane displacement for isotropic panels were fitted to an equation governing the nonlinear postbuckling response. This method provides the critical buckling load, a postbuckling parameter and the amplitude of initial imperfection of the panel. Comparison with analytical results revealed that simply supported boundary conditions were closely achieved. Examination of compressively loaded corrugated board panels showed that collapse occurred due to compressive failures of the facings in the highly stressed edge regions without severe influence from stress concentrations at load introduction and edge supports.  相似文献   

14.
The general form of the solution of the Airy function for the stress distributions that describe the non-linear effect developed from the large deflection of simply supported plates with movable edges are found by superposition of the Airy functions, which satisfy the large deflection condition and the boundary conditions of the edges. Each term of the Airy function consists of a particular solution and a homogeneous one. The particular solution satisfying the large deflection condition is classified into six cases, depending on the combinations of the modal numbers of the comparison functions. The corresponding homogeneous solution is found to make each Airy function satisfy the boundary condition by using the Fourier series method. The solution is applied to the non-linear analysis of the deflection of the simply supported plates with movable edges under transverse loading, and is verified by comparison with other investigation.  相似文献   

15.
The three-dimensional elasticity solution for static analysis of a functionally graded material (FGM) cylindrical panel with simply supported edges is developed. The modulus of elasticity varies continuously throughout the thickness direction in the form of an exponential function. The panel is bonded with piezoelectric layers. Using Fourier series expansions in the axial and circumferential directions, the state equations are derived. The stress, displacement and electric potential distributions are obtained by solving these state equations. The influences of the material gradient index, applied voltage, and radius to thickness ratio on the static behavior of FGM shell are also studied.  相似文献   

16.
本文研究两对边简支、中间有任意个粘弹性线支矩形板的横向振动问题,给出了一个求其动态特性的新的精确解析方法。首先将粘弹性线支反力视为是作用于板上的未知外力,求得了含有未知外力的对边简支矩形板横向振动微分方程的精确解析解,然后利用边界条件及线支处支承反力与位移的线性关系导出频率方程及振型函数,方法有独特的优越性。本文最后还给出了一些算例。  相似文献   

17.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

18.
We analyze the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads. The functionally graded shell is simply supported at the edges and it is assumed to have an arbitrary variation of material properties in the radial direction. The three-dimensional steady-state heat conduction and thermoelasticity equations, simplified to the case of generalized plane strain deformations in the axial direction, are solved analytically. Suitable temperature and displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are then solved by the power series method. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material, although the analytical solution is also valid for isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded shells that have a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial direction. The cylindrical shells are also analyzed using the Flügge and the Donnell shell theories. Displacements and stresses from the shell theories are compared with the three-dimensional exact solution to delineate the effects of transverse shear deformation, shell thickness and angular span.  相似文献   

19.
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.  相似文献   

20.
The buckling loads of eight-ply graphite-epoxy cylindrical panels with midplane delamination were determined experimentally. The study included two different ply orientations, two different aspect ratios, two different delamination sizes, and one set of boundary conditions; clamped along the top and bottom edges and simply supported along the vertical sides. The experimental test results are compared to the linear bifurcation and nonlinear collapse loads of panels with square cutouts obtained from the STAGSC-1 finite-element computer code. Paper was presented at the 1985 SEM Spring Conference on Experimental Mechanics held in Las Vegas, NV on June 9–14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号