首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electronic and structural properties of vanadium‐containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation. Nanostructured, crystalline MnWO4 serves as the support that stabilizes a defect‐rich MnOx surface phase. Oxygen defects can be reversibly replenished and depleted at the reaction temperature. Terminating MnOx zigzag chains on the (010) crystal planes are suspected to bear structurally site‐isolated oxygen defects that account for the unexpectedly good performance of the catalyst in propane activation.  相似文献   

2.
A series of Ce-Mn-Ox catalysts synthesized under different hydrothermal conditions were evaluated by catalytic removal of toluene. The results of characterization showed that the contents of oxygen vacancies and active species in catalysts were crucial for the catalytic oxidation process. The concentration of Ce3+, Mn3+, and adsorbed oxygen associated with structural defects in Ce-Mn-Ox catalysts could be controlled by hydrothermal conditions, which were considered to promote redox capacity and improve catalytic oxidation performance. In addition, suitable synthetic conditions could increase the SBET and Vp of catalysts. Among the prepared catalysts, CM-100 showed the best catalytic performance due to the generation of more defective oxygen and active species (Ce3+, Mn3+, and surface-adsorbed oxygen). In addition, the CM-100 catalyst showed satisfactory water resistance and stability.  相似文献   

3.
Radically different dependences of the activity of La1 − x Sr x MnO3 (x = 0−0.5) perovskites in methane oxidation on the degree of substitution of strontium for lanthanum are observed for low and high temperatures. Unsubstituted LaMnO3 exhibits the highest activity in the temperature range from 300 to 500°C, while the sample with the maximum degree of substitution (La0.5Sr0.5MnO3) shows the highest activity at higher temperatures of 700–900°C. In the low temperature region, the activity of La1t - x Sr x MnO3 is determined by the amount of weakly bound (overstoichiometric) oxygen, which is formed in cation-deficient lattices and is characterized by a thermal desorption peak with T max = 705°C. At higher temperatures (800–900°C), the strongly bound oxygen of the catalyst lattice is involved in the formation of the reaction products under both unsteady- and steady-state conditions. As a consequence, the catalytic activity in methane oxidation correlates with the apparent rate constant of oxygen diffusion in the oxide bulk.  相似文献   

4.
《中国化学快报》2023,34(2):107437
A series of monolithic MnO2/iron mesh (IM) catalysts for oxidation of toluene were successfully prepared by using in situ hydrothermal growth. MnO2 can grow firmly on the IM substrates surface with a shedding rate of only 0.14%. Due to the highest Oads and high-valent Mn4+ and Fe3+ elements, the temperature at 50% and 90% toluene conversion (T50% and T90%) was 252 and 265 °C, respectively for the best performance catalyst (hydrothermal temperature of 80 °C, hydrothermal time of 12 h, and precursor manganese ion concentration of 0.03 mol/L). The catalysts also presented good water resistance and cycle performance. In-situ DRIFTS results suggesting that toluene was first rapid transformed into the reaction intermediate species (benzoate species) and then converted to CO2 and H2O. Therefore, this work provides a new direction for the research and application of IM-based monolithic catalysts.  相似文献   

5.
《中国化学快报》2023,34(1):107189
Manganese dioxide (MnO2), a commonly find oxidant in both natural environment and industrial application, plays a crucial role for various organic compound degradation. Tuning the MnO2 crystal structure is a cost-effective strategy to boost the oxidation reactions, where the challenge remains due to lacking in-depth investigation of the crystal properties. Herein, MnO2 with different crystalline structures (x-MnO2) including α-, β- and δ- was prepared through the hydrothermal synthesis for a typical organic pollutant removal. The structural and degradation analysis indicated that the oxidation capacity was originated from Mn3+ and oxygen vacancies (OVs). The intrinsic relationships between oxidation performance and other physiochemical properties such as morphology and electrochemistry were thoroughly discussed, and positive correlations between oxidation capacity and electrochemical properties were found which eventually led to excellent oxidation performance via modulating the above-mentioned properties. Moreover, the K+ content was determined to be the most crucial role in manipulating the structure properties. This work offers a crystal-level insight into the relationship between the crystal structure and oxidative property, promoting rational design of highly efficient oxidant.  相似文献   

6.
Various manganese oxide nanorods with similar one-dimensional morphology were prepared by calcination of MnOOH nanorods under different gas atmosphere and at different temper-atures, which were synthesized by a hydrothermal route. The morphology and structure of MnOx catalysts were characterized by a series of techniques including X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and tempera-ture programmed reduction (TPR). The catalytic activities of the prepared MnOx nanorods were tested in the liquid phase aerobic oxidation of benzyl alcohol, which follow a sequence as MnO2>Mn2O3≈Mn3O4>MnOOH with benzaldehyde being the main product. On the basis of H2-TPR results, the superior activity of MnO2 is ascribed to its lower reduction temperature and therefore high oxygen mobility and excellent redox ability. Moreover, a good recycling ability was observed over MnO2 catalysts by simply thermal treatment in air.  相似文献   

7.
For the first time, the manganese gallide (MnGa4) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnOx‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnOx minerals with distinct structures and induced defects: birnessite δ‐MnO2, feitknechtite β‐MnOOH, and hausmannite α‐Mn3O4. The abundance and intrinsic stabilization of MnIII/MnIV active sites in the three MnOx phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa4 precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm?2 with a durability of more than five days.  相似文献   

8.
采用硬模板法制得CeM-HT(M=Cu、Mn、Fe和Co)复合氧化物催化剂,借助XRD、BET、O2-TPD和H2-TPR研究了催化剂的物理化学性质,通过甲苯催化燃烧探针反应评价了催化剂的催化性能。结果表明,CuO、MnOx、FeOx和Co3O4能溶入CeO2晶格形成Ce-O-Cu、Ce-O-Mn、Ce-O-Fe和Ce-O-Co固溶体,Cu和Mn离子的溶入导致CeO2晶格发生了较大程度的晶格畸变,Fe和Co离子对CeO2晶格的影响较小,且在CeCo-HT氧化物催化剂中还存在微量晶相Co3O4。所制得的CeM-HT氧化物催化剂表现出了优越的甲苯催化燃烧性能,在反应温度为300、270、260和230 ℃时,CeFe-HT、CeCo-HT、CeMn-HT和CeCu-HT氧化物催化剂上甲苯的催化燃烧转化率分别达93.7%、95.0%、96.5%和95.0%以上。Ce基复合氧化物催化剂的甲苯催化燃烧活性顺序与其氧脱附性能、储氧性能和可还原性能具有正相关性,遵从顺序为CeCu-HT > CeMn-HT > CeCo-HT > CeFe-HT。  相似文献   

9.
《中国化学快报》2023,34(3):107605
A series of α-MnO2 catalysts with various Mn valence states were treated by hydrogen reduction for different periods of time. Their catalytic capacity for formaldehyde (HCHO) oxidation was evaluated. The results indicated that hydrogen reduction dramatically improves the catalytic performance of α-MnO2 in HCHO oxidation. The α-MnO2 sample reduced by hydrogen for 2 h possessed superior activity and could completely oxidize 150 ppm HCHO to CO2 and H2O at 70 °C. Multiple characterization results illustrated that hydrogen reduction contributed to the production of more oxygen vacancies. The oxygen vacancies on the catalyst surface enhanced the adsorption, activation and mobility of O2 molecules, and thereby enhanced HCHO catalytic oxidation. This study provides novel insight into the design of outstanding MnOx catalysts for HCHO oxidation at low temperature.  相似文献   

10.
The Earth‐abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn3+ species, a small amount of AuNPs (<5 %) in α‐MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α‐MnO2.  相似文献   

11.
本文采用溶胶凝胶法制备了一系列不同Ca含量的钙钛矿型氧化物La1-xCaxMnO3(x=0~0.4)纳米颗粒, X射线粉末衍射及精修、扫描电镜表征显示其相纯度和结晶度高, 颗粒平均粒径约40 nm。在0.1 mol·L-1 KOH水溶液中进行的氧还原电催化性能测试显示, La0.7Ca0.3MnO3样品催化活性最高, 表观电子转移数接近4, 还原电流密度与Pt/C催化剂相当, 而催化稳定性优于Pt/C。进一步研究了La1-xCaxMnO3样品中Mn价态、晶胞参数的改变对氧还原催化活性的影响, 结果表明当x=0.3时, 催化剂中Mn处于混合价态, Mn-O键长适中, 最有利于电催化反应。  相似文献   

12.
For the first time, the electrochemical oxygen reduction reaction (ORR), was investigated using cyclic voltammetry (CV) on the electrodeposited manganese oxide (MnO x )-modified glassy carbon (MnO x -GC) electrode in the room temperature ionic liquids (RTILs) of EMIBF4, i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4). The results demonstrated that, after being modified by MnO x on a GC electrode, the reduction peak current of oxygen was increased to some extent, while the oxidation peak current, corresponding to the oxidation of superoxide anion, i.e., O2 was attenuated in some degree, suggesting that MnO x could catalyze ORR in RTILs of EMIBF4, which is consistent with the results obtained in aqueous solution. To accelerate the electron transfer rate, multi-walled carbon nanotubes (MWCNTs) was modified the GC electrode, and then MnO x was electrodeposited onto the MWCNTs-modified GC electrode to give rise to a MnO x /MWCNTs-modified GC electrode, consequently, the improved standard rate constant, ks, originated from the modified MWCNTs, along with the modification of electrodeposited MnO x , showed us a satisfactory electrocatalysis for ORR in RTILs of EMIBF4. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 3, pp. 340–345. The article is published in the original.  相似文献   

13.
MnOx-SnO2 composite oxides prepared by a redox coprecipitation route were tested in selective catalytic reduction of NO by NH3 at low temperatures. The results showed that the MnOx-SnO2 catalyst with a Mn/(Mn+Sn) molar ratio of 75% exhibited the best performance, on which NO conversion of 100% could be achieved at temperatures of 120–200 °C. The characterization results of N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the higher surface area, the formation of solid solution between manganese and tin oxides, and the high oxidation state manganese species were responsible for the high catalytic activity of the MnOx-SnO2 catalyst.  相似文献   

14.
Ti/IrO2(x) + MnO2(1-x) anodes have been fabricated by thermal decomposition of a mixed H2IrCl6 and Mn(NO3)2 hydrosolvent. Cyclic voltammetry (CV) and polarization curve have been utilized to investigate the electrochemical behavior and electrocatalytic activity of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution (pH = 2). Ti/IrO2+MnO2 anode with 70 mol% IrO2 content has the maximum value of q*, indicating that Ti/IrO2(0.7) + MnO2(0.3) anode has the most excellent electrocatalytic activity for the synchronal evolution of Cl2 and O2 in dilute NaCl solution. Tafel lines displayed two distinct linear regions with one of the slope close to 62 mV dec−1 in the low potential region and the other close to 295 mV dec−1 in the high potential region. Electrochemical impedance spectroscopic is employed to investigate the impedance behavior of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution. It is observed that as the R ct, R s and R f values for Ti/IrO2(0.7) + MnO2(0.3) anode become smaller, electrocatalytic activity of Ti/IrO2(0.7) + MnO2(0.3) anode becomes better than that of other Ti/IrO2 + MnO2 anodes with different compositions. Ti/IrO2(0.7) + MnO2(0.3) anode fabricated at 400 °C has been observed to possess the highest service life of 225 h, whereas the accelerated life test is carried out under the anodic current of 2 A cm−2 at the temperature of 50 °C in 0.5 M NaCl solution (pH = 2).  相似文献   

15.
《中国化学快报》2021,32(11):3435-3439
A facile hydrothermal method was applied to gain stably and highly efficient CuO-CeO2 (denoted as Cu1Ce2) catalyst for toluene oxidation. The changes of surface and inter properties on Cu1Ce2 were investigated comparing with pure CeO2 and pure CuO. The formation of Cu-Ce interface promotes the electron transfer between Cu and Ce through Cu2+ + Ce3+ ↔ Cu+ + Ce4+ and leads to high redox properties and mobility of oxygen species. Thus, the Cu1Ce2 catalyst makes up the shortcoming of CeO2 and CuO and achieved high catalytic performance with T50 = 234 °C and T99 = 250 °C (the temperature at which 50% and 90% C7H8 conversion is obtained, respectively) for toluene oxidation. Different reaction steps and intermediates for toluene oxidation over Cu1Ce2, CeO2 and CuO were detected by in situ DRIFTS, the fast benzyl species conversion and preferential transformation of benzoates into carbonates through C=C breaking over Cu1Ce2 should accelerate the reaction.  相似文献   

16.
将高锰酸钾与活性炭(AC)原位氧化还原制备的活性炭载锰氧化物(MnOx/AC)用作臭氧分解的催化剂. 采用扫描电镜、X射线光电子能谱、X射线衍射、电子自旋共振波谱、拉曼光谱以及程序升温还原研究了设计Mn负载量对负载锰氧化物性质(形貌、氧化态和晶体结构)的影响. 结果表明,Mn负载量由0.44%增至11%,负载锰氧化物在活性炭表面由疏松的地衣状变为堆叠的纳米球状体,负载层的厚度由~180 nm增加至~710 nm,结构由氧化态+2.9到+3.1的低结晶β-MnOOH生长为由氧化态+3.7到+3.8的δ-MnO2结晶. MnOx/AC室温催化分解低浓度臭氧的活性与负载锰氧化物的形貌及含量密切相关. Mn负载量为1.1%的MnOx/AC具有疏松的地衣状形貌,催化分解臭氧的性能最高,Mn负载量为11%的MnOx/AC具有紧密的堆积结构,因而表现出最低的催化臭氧分解活性.  相似文献   

17.
本文采用溶胶凝胶法制备了一系列不同Ca含量的钙钛矿型氧化物La1-xCaxMnO3(x=0~0.4)纳米颗粒,X射线粉末衍射及精修、扫描电镜表征显示其相纯度和结晶度高,颗粒平均粒径约40 nm。在0.1 mol.L-1KOH水溶液中进行的氧还原电催化性能测试显示,La0.7Ca0.3MnO3样品催化活性最高,表观电子转移数接近4,还原电流密度与Pt/C催化剂相当,而催化稳定性优于Pt/C。进一步研究了La1-xCaxMnO3样品中Mn价态、晶胞参数的改变对氧还原催化活性的影响,结果表明当x=0.3时,催化剂中Mn处于混合价态,Mn-O键长适中,最有利于电催化反应。  相似文献   

18.
The development of novel superhard nanocomposite, nano-layered coatings and of the coating technology based on vacuum arc evaporation from rotating electrodes is summarized. The nc-Al1-xTixN/a-Si3N4 coatings in which the nanocrystals of the Al-rich solid solution with the fcc crystal structure of TiN are imbedded into a thin matrix of amorphous silicon nitride show high thermal stability, oxidation resistance and excellent performance in dry, fast machining that is superior to the state-of-the-art (Ti1-xAlx)N coatings.  相似文献   

19.
The oxidation of the n = 1 Ruddlesden-Popper phase, Sr2MnO3.5+x, where 0 ≤ x ≤ 0.5 has been investigated using a combination of in-situ diffraction techniques. In agreement with previous reports the room temperature structure of Sr2MnO3.5+x was determined to be monoclinic crystallising in space group P21/c. On heating in air the material undergoes rapid oxidation at a relatively modest temperature, ∼275 °C. The oxidation process is coincident with a significant change in the structure, with the material now adopting a tetragonal I4/mmm structure. In the oxygen deficient phase where x > 0 the Mn coordination is square pyramidal, with a sixth partially occupied oxygen position giving rise to octahedral coordination. Oxidation of Sr2MnO3.5+x results in the filling of the partially occupied O4 positions and a resulting increase in symmetry, with the Mn coordination now adopting solely a distorted octahedral environment.  相似文献   

20.
The establishment of Z‐scheme charge transfer between semiconductors is an effective method to improve the performance of hybridized semiconductor photocatalysts. Herein, the novel photocatalysts consisting of MoO3‐x and varying amounts of cadmium sulfide (CdS) nanospheres were successfully prepared via the one‐pot hydrothermal method in the presence of polyvinylpyrrolidone (PVP). It is indicated that the PVP not only served as the reducing agent for the formation of oxygen defects in MoO3‐x, but also the cross‐linking agent for the coupling between MoO3‐x and CdS. The CdS/MoO3‐x composite allowed for higher visible‐light photocatalytic performance for enhanced removal of methylene blue and tetracycline with an efficiency of 97.6% and 85.5%, respectively. The improved performance of the CdS/MoO3‐x composite was found to be mainly attributable to the remarkable charge carrier separation and transfer between CdS and MoO3‐x based on the favorable hole‐transporting nature and oxygen deficiencies of MoO3‐x. In addition, the hole‐oxidized photocorrosion of CdS was efficiently suppressed due to the presence of hole‐attractive MoO3‐x. At the solid interface, an oxygen‐defects‐mediated Z‐scheme charge carrier transfer pathway was proposed as the underlying mechanism for the superior photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号