首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Based on the laws of conservation of mass, momentum, and energy, equations of dynamics of multiphase systems, which are gas mixtures with hollow microspheres with selectively permeable shells, are obtained under the assumption of quasisteadiness of the process offilling the microspheres by the gas. Acoustic characteristics of the system composed of a uniform gas and hollow permeable microspheres are studied using a simplified (onevelocity and onetemperature) model. The frequency dependences of velocity and damping coefficient of sound are determined with regard for gas density (pressure) relaxation inside the microspheres.  相似文献   

2.
This paper presents an experimental study of the interaction between a vortex ring and a moving wall. This type of flow can be considered as modeling, in a simplified way, the interaction between a "typical eddy" and the viscous sublayer of a turbulent boundary layer. In the present study, the vortex ring is considered as a three-dimensional (3D) perturbation of a viscous Stokes layer. The interaction was first characterized by visualization. To obtain quantitative information, digital particle image velocimetry (DPIV) and holographic particle-tracking velocimetry (HPTV) were used. These different techniques led to a precise and detailed characterization of the vortex ring alone and of an interaction in which a hairpin vortex is generated in the Stokes layer. The results obtained show a good similarity between the observed vortex ring and the Oseen model. They also validate the Stokes layer model and show that in the present conditions, the hairpin vorticity is comparable to that of the Stokes layer. The holographic study, which was undertaken to obtain full 3D three-component (3D3C) velocity maps, showed the present limitations of HPTV.  相似文献   

3.
In this paper the global dynamics and topological integrity of the basins of attraction of a parametrically excited cylindrical shell are investigated through a two-degree-of-freedom reduced order model. This model, as shown in previous authors?? works, is capable of describing qualitatively the complex nonlinear static and dynamic buckling behavior of the shell. The discretized model is obtained by employing Donnell shallow shell theory and the Galerkin method. The shell is subjected to an axial static pre-loading and then to a harmonic axial load. When the static load is between the buckling load and the minimum post-critical load, a three potential well is obtained. Under these circumstances the shell may exhibit pre- and post-buckling solutions confined to each of the potential wells as well as large cross-well motions. The aim of the paper is to analyze in a systematic way the bifurcation sequences arising from each of the three stable static solutions, obtaining in this way the parametric instability and escape boundaries. The global dynamics of the system is analyzed through the evolution of the various basins of attraction in the four-dimensional phase space. The concepts of safe basin and integrity measures quantifying its magnitude are used to obtain the erosion profile of the various solutions. A detailed parametric analysis shows how the basins of the various solutions interfere with each other and how this influences the integrity measures. Special attention is dedicated to the topological integrity of the various solutions confined to the pre-buckling well. This allows one to evaluate the safety and dynamic integrity of the mechanical system. Two characteristic cases, one associated with a sub-critical parametric bifurcation and another with a super-critical parametric bifurcation, are considered in the analysis.  相似文献   

4.
The state of bentonite gels at the start of the ageing experiment must be well-defined, and this required the gels to be at a constant surface chemistry condition. This is achieved by allowing the freshly prepared gels to rest for a day. At this state, the yield stress is constant, provided that the gel is at an equilibrium breakdown state after stirring prior to each measurement. This point is also the yield stress at zero aged time. Ageing study then commenced, and the behaviour is generally characterised by an increasing yield stress with wait time. Alkali metal ion type and concentration affect the gel ageing and stability behaviour significantly. The ageing behaviour is most pronounced at low salt concentrations for the smallest and most strongly hydrated cations, Li +and Na +. The yield stress at any given aged time and its rate of increase are generally larger. Coarsening of these suspensions was observed. The opposite is true for the weakly hydrated K +and Cs +ions. At high concentrations of 0.5 and 1.0 M Cs, K and Na ions, the gels became unstable over time and phase-separated. The stability time of these weak gels was found to increase with decreasing cation size, Na > K > Cs. This stability time displayed a very strong quantitative correlation with the hydration bond length. Coarsening was also expected, but not observed due to the lack of integrity of these weak aggregates during particle size measurement. The recovery or ageing behaviour was fitted with both the Nguyen–Boger and Leong models.  相似文献   

5.
A comparative analysis of the influence of steam leakage through vane, gland, and shaft seals on the rotordynamics of the high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine was performed using numerical calculations. The rotordynamic coefficients associated with steam leakage through the three labyrinth seals were calculated using the control-volume method and perturbation analysis. A stability analysis of the rotor system subject to the steam forcing induced by the leakage flow was performed using the finite element method. An analysis of the influence of the labyrinth seal forcing on the rotordynamics was carried out by varying the geometrical parameters pertaining to the tooth number, seal clearance, and inner diameter of the labyrinth seals, along with the thermal parameters with respect to pressures and temperatures. The results demonstrated that the steam forcing with an increase in the length of the blade for the vane seal significantly influences the rotordynamic coefficients. Furthermore, the contribution of steam forcing to the instability of the rotor is decreased and increased with increases in the seal clearance and tooth number, respectively. The comparison of the rotordynamic coefficients associated with steam leakage through the vane seal, gland seal, and shaft seal convincingly disclosed that, although the steam forcing attenuates the stability of the rotor system, the steam turbine is still operating under safe conditions.  相似文献   

6.
This paper considers the problem of the stability in the small of the steadystate spinning of a rotor with a cylindrical cavity partly filled with a viscous, incompressible, conducting liquid in a magnetic field. The responses of the buttend boundary layers and the resultant force exerted by the liquid on the rotor performing circular precession of small radius are determined. The plane of the viscoelastic restraint parameters of the rotor axis was Dpartitioned into regions with different degrees of instability is constructed. Steadystate spinning near the boundary of the region of stability in the space of parameters is studied assuming nonlinear responses of the supports. It is shown that passage through the boundary of the region of stability leads to bifurcation of the steadystate spinning regime, resulting in periodic motion of the type of circular precession. The origin ofperiodic motion from steadystate spinning can be subcritical or supercritical.  相似文献   

7.
0Introduction Anelectronicpackageisgenerallyconstructedwithanactivesiliconchip,mountisland,gold wires,leadframesandsoldersasshowninFig.1(a).Toprotectfromtheenvironment,thesilicon chipisusuallyencapsulatedinresin.SincethesematerialshavedifferentCTE(coefficientofthermal expansion),stressandstrainaregeneratedbyinternalheatinginserviceoperationorthermalloading fromtheenvironment[1].Insomecases,thismaycausefailureofthewireandcrackinganddebonding insidethepackage.Thereliabilityofelectronicpackages…  相似文献   

8.
An axisymmetric laminar separated flow in the vicinity of a coneflare model is studied experimentally and numerically for a Mach number M = 6. The distributions of pressure and Stanton numbers along the model surface and velocity profiles in the region of shock wave–boundary layer interaction are measured and compared with the calculated data. The influence of the laminar–turbulent transition on flow parameters is studied numerically.  相似文献   

9.
Investigation on chaos synchronization of autonomous dynamical systems has been largely reported in the literature. However, synchronization of time-varying, or nonautonomous, uncertain dynamical systems has received less attention. The present contribution addresses full- and reduced-order synchronization of a class of nonlinear time-varying chaotic systems containing uncertain parameters. A unified framework is established for both the full-order synchronization between two completely identical time-varying uncertain systems and the reduced-order synchronization between two strictly different time-varying uncertain systems. The synchronization is successfully achieved by adjusting the determined algorithms for the estimates of unknown parameters and the linear feedback gain, which is rigorously proved by means of the Lyapunov stability theorem for nonautonomous differential equations together with Barbalat’s lemma. Moreover, the synchronization result is robust against the disturbance of noise. We illustrate the applicability for full-order synchronization using two identical parametrically driven pendulum oscillators and for reduced-order synchronization using the parametrically driven second-order pendulum oscillator and an additionally driven third-order Rossler oscillator.  相似文献   

10.
A mechanistic model of bubble breakup and coalescence has been developed for a packed bed. Bubble breakup and coalescence models are developed for two coalescence and three breakup mechanisms by taking account of geometry effects and local flow conditions. The bubble size distribution estimated with the present bubble breakup and coalescence models are compared with the experimental data. Change of bubble size distributions along the axial direction is studied with the median bubble size. Median bubble size as a function of the axial location is estimated under two inlet flow conditions: (1) bubble breakup dominated flow and (2) bubble coalescence dominated flow. The predictions of the median bubble size with the present model result in the best among other existing bubble breakup and coalescence models. However, the prediction of the median bubble size for the bubble coalescence dominated flow is still significantly larger than the experimental data. Breakup and coalescence coefficients need to be adjusted in order to predict more accurate bubble size distributions and median bubble size for both flow conditions. For the bubble breakup dominated flow, the breakup and coalescence coefficients are found to be 0.35 and 0.4, respectively. For the bubble coalescence dominated flow, the breakup and coalescence coefficients are found to be 0.35 and 0.01, respectively.  相似文献   

11.
The rheology and slip of a dry shaving foam are investigated using squeeze-flow and rotating-vane methods. Constant-force squeeze flow between planar surfaces is used to study the effect of surface roughness on slip and to obtain the yield stress. Non-slip vane measurements are used to obtain the linear shear viscosity and elasticity at small strains, and the yield stress and strain at large strains. Data are compared with the small-strain Maxwell and Kelvin–Voigt linear-viscoelastic models. An apparent dependence of the yield stress and elasticity on the rotational speed of the vane is shown to result from time-dependent rheological parameters as the foam ages. The effect of viscosity in the pre-yield region may give an erroneous identification of yield.  相似文献   

12.
We study the dynamic interactions between traveling waves propagating in a linear lattice and a lightweight, essentially nonlinear and damped local attachment. Correct to leading order, we reduce the dynamics to a strongly nonlinear damped oscillator forced by two harmonic terms. One of the excitation frequencies is characteristic of the traveling wave that impedes to the attachment, whereas the other accounts for local lattice dynamics. These two frequencies are energy-independent; a third energy-dependent frequency is present in the problem, characterizing the nonlinear oscillation of the attachment when forced by the traveling wave. We study this three-frequency strongly nonlinear problem through slow-fast partitions of the dynamics and resort to action-angle coordinates and Melnikov analysis. For damping below a critical threshold, we prove the existence of relaxation oscillations of the attachment; these oscillations are associated with enhanced targeted energy transfer from the traveling wave to the attachment. Moreover, in the limit of weak or no damping, we prove the existence of subharmonic oscillations of arbitrarily large periods, and of chaotic motions. The analytical results are supported by numerical simulations of the reduced order model.  相似文献   

13.
A computational model has been developed to predict heat and mass transfer and hydrodynamic characteristics of a turbulent gas–vapor–droplet flow. Turbulent characteristics of the gas phase are computed using the k– model of turbulence. It is shown that, with increasing inlet droplet diameter, the rate of heat transfer between the duct surface and the vapor–gas mixture decreases appreciably, whereas the wall friction increases only insignificantly. The predicted values agree fairly well with available experimental and numerical data  相似文献   

14.
The mathematical modelling of highly compressible unsteady flows has been of interest for some years. In order to obtain tractable solutions of the governing equations, investigators have made various simplifying assumptions such as presuming isothermal or isentropic flow of ideal gases, etc. The present review, with dense phase gas tranmission systems of particular interest, briefly develops the basic equations without such assumptions and includes the effects of wall friction and heat transfer. After re-expressing the equations in terms of the measurable quantities of pressure, temperature and velocity, previously published work is reviewed for their solution. Relevant experimental work is somewhat limited but contributions from 20 references are included.  相似文献   

15.
The uniaxial compressive responses of 3003 Al–Mn alloy upon strain rates ranging from 0.001/s to about 104/s with initial temperatures from 77 K to 800 K were investigated. Instron servohydraulic testing machine and enhanced split Hopkinson bar facilities have been employed in such uniaxial compressive loading tests. The maximum true strain up to 80% has been achieved. The following observations have been obtained from the experimental results: 1) 3003 Al–Mn alloy presents remarkable ductility and plasticity at low temperatures and high strain rates; 2) its plastic flow stress strongly depends on the applied temperatures and strain rates; 3) the temperature history during deformation strongly affects the microstructure evolution within the material. Finally, paralleled with the systematic experimental investigations, a physically-based model was developed based on the mechanism of dislocation kinetics. The model predictions are compared with the experimental results, and a good agreement has been observed.  相似文献   

16.
This work deals with the study of the boundary layer flow and mass transfer of a visco-elastic fluid immersed in a porous medium over a stretching surface in the presence of surface slip, chemical reaction and variable viscosity. The partial differential equations governing the flow have been transformed by similarity transformation into a system of coupled nonlinear ordinary differential equations which is solved numerically by means of the fourth order Runge-Kutta integration scheme coupled with the shooting technique. The effects of various involved interesting parameters on the velocity fields and concentration fields are shown graphically and investigated. In addition, tabulated results for the local skin-friction coefficient and the local Sherwood number are presented and discussed.  相似文献   

17.
The necessity of health-monitoring and supervising structures will be justified under aspects of reliability and safety as well as with regard to economical reasons. Considering the achievements in measurement techniques combined with computer techniques, the requirements on the evolution of efficient monitoring systems will be indicated. The prerequisite will be pointed out, to conceive such systems in close co-ordination with the mathematical modelling of the structure. This is inalienable with concern to system-identification, as generally the control-parameters cannot be measured directly; they are to calculate on the basis of the mathematical model and the measurable structural response symptoms. This requires mathematical complicate solution of inverse problems. During service/operation many effects give rise for degradation of the structural resistance, reducing the safety and the life-time as well. The results of system identification enable the determination of damage indicators, which provide information on the scale of degradation in the course of time to estimate the limit of service-life and the residual life-time.  相似文献   

18.
The problem of gliding descent of a smooth blunted body possessing a lifting force and a heatconducting surface in the Earth's atmosphere is solved. The descent trajectory is represented not only by the altitude and velocity as functions of the flight time but also by angles of attack and sideslip varying with time. Threedimensional equations of a parabolized viscous shock layer for a multispecies mixture of gases are solved jointly with a threedimensional equation of unsteady heat conduction in the solid phase.  相似文献   

19.
In this article, we investigate the kinetic/fluid coupling on a toy model, which we obtain rigorously from a hydrodynamical limit. The idea is that at the level of the full kinetic model, the coupling is obvious. We then investigate the coupling obtained when passing into the limit. We show that, especially in presence of a shock stuck on the interface, the coupling involves a kinetic layer known as the Milne problem. Due to this layer, the limit process is quite delicate and some blow-up techniques are needed to ensure its strong convergence.  相似文献   

20.
Many instruments used to measure viscoelastic properties are only capable of subjecting a sample to a limited range of loading frequencies. For thermorheologically simple materials, it is assumed that a change in temperature is equivalent to a shift of the viscoelastic behavior on the log frequency or time axis. For many materials, time–temperature superposition appears to work well for modulus or compliance curves over three decades of time or frequency, but some deviations are known if the window is expanded to five or six decades. To apply a more stringent test of the validity of time–temperature superposition, broadband viscoelastic spectroscopy is used to isothermally study polymethylmethacrylate and low-density polyethylene at several temperatures in the glassy region. Shear modulus and damping (tan δ) are measured isothermally over a wide range (up to 11 decades) of time and frequency. Results indicate that, while modulus curves can be approximately superimposed, the damping (tan δ) curves change in height and shape with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号