首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a ternary semiconductor nanoparticle sensitizer – AgSbS2 – for solar cells. AgSbS2 nanoparticles were grown using a two-stage successive ionic layer adsorption and reaction process. First, Ag2S nanoparticles were grown on the surface of a nanoporous TiO2 electrode. Secondly, a Sb–S film was coated on top of the Ag2S. The double-layered structure was transformed into AgSbS2 nanoparticles ~ 40 nm in diameter, after post-deposition heating at 350 °C. The AgSbS2-sensitized TiO2 electrodes were fabricated into liquid-junction solar cells. The best cell yielded a power conversion efficiency of 0.34% at 1 sun and 0.42% at 0.1 sun. The external quantum efficiency (EQE) spectrum covered the range of 380–680 nm with a maximal EQE of 10.5% at λ = 470 nm. The method can be applied to grow other systems of ternary semiconductor nanoparticles for solar absorbers.  相似文献   

2.
Here we reported that UV light irradiation can significantly enhance sensitivity of Ti/TiO2 electrode for determination of trace heavy metal ions (such as Cu2 +, Pb2 + and Cd2 +) owing to the photodeposition of metal ions on the surface of electrodes. The sensitivity of heavy metal ions can be selectively enhanced over the Ti/TiO2 electrode, which is attributed to matching between potential of heavy metal ions and the position of the conduction band of TiO2.  相似文献   

3.
Highly porous networks and reduced grain boundaries with one-dimensional (1-D) nanofibrous morphology offer enhanced charge transport in solar cells applications. Quantum dot (QDs) decorated TiO2 nanofibrous electrodes, unlike organic dye sensitizers, can yield multiple carrier generations due to the quantum confinement effect. This paper describes the first attempt to combine these two novel approaches, in which CdS (~18 nm) and CdSe (~8 nm) QDs are sensitized onto electrospun TiO2 nanofibrous (diameter ~80–100 nm) electrodes. The photovoltaic performances of single (CdS and CdSe) and coupled (CdS/CdSe) QDs-sensitized TiO2 fibrous electrodes are demonstrated in sandwich-type solar cells using polysulfide electrolyte. The observed difficulties in charge injection and lesser spectral coverage of single QDs-sensitizers are solved by coupling (CdS:CdSe) two QDs-sensitizers, resulting in a enhanced open-circuit voltage (0.64 V) with 2.69% efficiency. These results suggest the versatility of fibrous electrodes in QDs-sensitized solar cell applications.  相似文献   

4.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

5.
300-nm-sized nanoporous TiO2 spheres (SPs), blended with 25-nm-sized nanoparticles, were successfully applied to low-temperature fabrication of TiO2 electrodes for dye-sensitized solar cell (DSC). The introduction of SPs increased the adsorbed amount dye molecules, induced the efficient transport of photo-injected electrons through TiO2 layer, and offered an extended light-scattering efficiency in the long wavelength region. Furthermore, the adhesion of TiO2 layer to the FTO substrate was considerably improved. As a result, the photovoltaic conversion efficiency (η) of DSC processed at 140 °C was enhanced from 4.4% to 6.3%.  相似文献   

6.
In the present work, we produce 15 μm thick titania mesosponge layers (TMSL) by a Ti anodization/etching process and use the layers in dye-sensitized solar cells (DSCs). We show that the solar cell efficiency can considerably be improved by a TiCl4 hydrolysis treatment (increase of approx. 40% to an overall value of 4.9% under AM 1.5 illumination). This beneficial effect is due to the decoration of the ~10 nm wide channels present in TMSL with TiO2 nanoparticles of approx. 3 nm diameter, which allow for a significantly higher specific dye loading of the TMS structure.  相似文献   

7.
A novel electrodeposited CdS nanoparticle-modified highly-ordered TiO2 nanotube-array photoelectrode and its application to photoelectrochemical cells is reported. Results show formation of a thin, nanoparticulate CdS layer, comprised of sphere-like 10–20 nm diameter nanoparticles, on the anodic synthesized TiO2 nanotube-array (inner diameter of 70 nm, wall thickness 25 nm and ca. 400 nm length) electrode. The resulting CdS–TiO2 photoelectrode has an as-fabricated bandgap of 2.53, and 2.41 eV bandgap after sintering at 350 °C in N2 ambient. Photoelectrochemical properties are described in detail.  相似文献   

8.
In this work, formation of porous TiOx layers and theirs corrosion behavior were studied. Application of H3PO4 electrolytes results in porous TiOx formation. The process is enhanced by small amount of HF content in the electrolyte. The HF results in higher current density, enhancing dissolution. Small 0.5% HF concentration results in nanopores formation, with pore diameter of about 45 nm. Increase of HF concentration up to 10% results in pores with average diameter of about 5.2 μm. An increase of etching time results in larger pore diameter, but between large 2–5 μm diameter pores smallest ones were observed with diameter below 200 nm. In the initial etching process a remnants of the flat surface are presents with initial cracks in the surface, indicating places for growth of the pores.The TiOx layers can be used as a biomaterial. The corrosion behavior of the layer investigated in Ringer’s solution, revealed an excellent corrosion resistance, with respect to pure Ti.  相似文献   

9.
Fourier transform infrared (FT-IR) and UV-visible spectroscopy were used to optimize TiO2 concentration in chitosan (CS) to develop a sensitive CS/TiO2 bioactive electrode. Electrochemical impedance spectroscopy (EIS) used to measure electro-activity of these bioactive electrodes associated with enhance oligosaccharide containing –CO groups from degradation of CS molecules. This matrix has free –NH2 and –OH functional groups due to higher probability of hydrogen and covalent bonding between –OH group in CS molecules with Ti–O–Ti which supported immobilization of rabbit antibodies (IgGs) and proteins. Ochratoxin A (OTA) was detected and showed a linear response up to 10 ng/mL with CS/TiO2 bio-electrode. The OTA detection sensitivity of 7.5 mM TiO2 added CS bioactive electrode was four times higher than only CS.  相似文献   

10.
High power and high energy density electrodes for rechargeable lithium-ion batteries are required for electrical mobility applications. Though nano-structuring of electrode materials generally improves the kinetics of the charge transport, thereby increasing the power density, the drawback is the low density of these electrodes compromising the energy density. Combining high power density with high energy density requires dense electrodes with optimal ionic and electronic wiring throughout the electrode microstructure. Here we present a facile and low cost templating method using carbonate salts creating 3D interconnected ionic pathways that improve the ionic charge transport without compromising the electrode density significantly. The method was demonstrated for C/Li4Ti5O12 electrode material resulting in excellent capacity retention reaching ~ 90% at 5 C and ~ 50% at 200 C rate combined with high active material electrode densities around 1.45 gm/cm3.  相似文献   

11.
A novel microreactor for TiO2-assisted photocatalysis in a microfluidic electrochemical cell was designed and constructed by a technology that can be reproduced in any chemical laboratory. The cell is obtained by a two-step thermal transfer of laser printed masks onto gold CD-Rs, a subtractive one to define the electrodes, and an additive one to define the channels. The TiO2 nanoparticles are physically embedded in a gold matrix by electrodeposition from a solution of ions of this metal also containing colloidal suspension of anatase. This modification is conducted in the assembled microfluidic cell, with minimum material and time consumption. A 100 mW UV-LED (365 nm) is focused on the modified electrode and irradiation of the sample in the thin layer microreactor is conducted under stopped flow condition. The Cu–EDTA complex served as model system to demonstrate the in situ photocatalytic digestion of organic matter followed by the voltammetric determination of the metal ion in aqueous solution. The voltammetric wave of 1.0 × 10−3 mol L−1 Cu(II) in acetate buffer (pH 4.7) at the gold electrode is suppressed by EDTA in the −0.3 to 0.8 vs. Ag/AgCl region. Irradiation of the bare electrode at 365 nm does not recover the wave, while irradiation of the TiO2-modified gold electrode causes the recovery of the copper wave, proving the photocatalytic destruction of the chelating agent. Diffusion transport to/from the modified electrode rapidly enrolls the whole volume of sample in the thin-layer above the electrode (about 19 nL), so that in less than four minutes the recorded voltammogram become indistinguishable from that of a copper ion solution without EDTA. This novel in situ sample pre-treatment approach is very promising, deserving further research aiming its integration in micro-TAS.  相似文献   

12.
Photocurrent was observed upon monochromatic illumination of an ITO electrode coated with a TiO2 nanocrystalline mesoporous membrane with carotenoid 8′-apo-β-caroten-8′-oic acid (ACOA) deposited as a sensitizer (illuminated area 0.25 cm2) and immersed in an aqueous 10 mM hydroquinone (H2Q), 0.1 M NaH2PO4 solution (pH = 7.4) purged with argon, using a platinum flag counter electrode (area 3.3 cm2) and a SCE reference electrode. The carotenoid-sensitized short-circuit photocurrent reached 4.6 μA/cm2 upon a 40 μW/cm2 incident light beam at 426 nm, with an IPCE (%, incident monochromatic photon-to-photocurrent conversion efficiency) as high as 34%. The short-circuit photocurrent was stable during 1 h of continuous illumination with only a 10% decrease. An open-circuit voltage of 0.15 V was obtained (upon 426 nm, 40 μW/cm2 illumination) which remained at a constant value for hours. The observed open-circuit voltage is close to the theoretical value (0.22 V) expected in such a system. The action spectrum resembled the absorption spectrum of ACOA bound on the TiO2 membrane with a maximum near 426 nm. No decay of the ACOA on the TiO2 surface was observed after 12 h, presumably because of rapid regeneration of ACOA from ACOA+ at the surface by electron transfer from H2Q.  相似文献   

13.
Nanosized TiO2/Ti photoanodes fabricated by metalorganic chemical vapor deposition (MOCVD) under different deposition temperatures were characterized and applied to the photoelectrocatalytic degradation of model pollutant of phenol. The anode prepared at 773 K was verified in anatase phase with a size about 60 nm and achieved the best photoelectrocatalytic activity, where IPCE could reach as high as 89% and the photoconversion efficiency peaked at 8.4%. The photoelectrocatalytic degradation of phenol was found well fit a pseudo-first-order kinetics, and kept stable performance in five continuous runs, confirming potential application of the electrode prepared by MOCVD for organic pollutants abatement.  相似文献   

14.
An Au thin film, which was sputter-deposited on an Al substrate, was potentiostatically anodized in oxalic acid. The Au film was first anodized and a spongelike nanoporous film grew down to the interface between Au and Al. Then, the Al was anodized and a very thin and fine nanoporous alumina film was formed underneath the nanoporous Au. Under the same anodization conditions, the current density for Al was ~ 40 μA cm 2, less than 1% of that for Au (~ 30 mA cm 2). The growth rates of the nanoporous films were ~ 0.7 nm/min for Al and 26 nm/min for Au, indicating that the growth rate of nanoporous alumina was less than 3% of that of nanoporous Au. Al is suitable as the substrate for preparing nanoporous Au films because the electrochemical reactions of both the electrolyte and the substrate are significantly suppressed when the nanopores penetrate Au and the electrolyte reaches the substrate.  相似文献   

15.
A composite electrode of Ni-ferrite/TiOx/Si(111) was synthesized by grafting Ni2+Fe2+Fe3+–LDH–TiCl3 (LDH: Layered Double Hydroxides) on n-Si(111) surface and calcined under 1100 °C. Photoelectric research results indicated that the electrode had good photovoltaic effects in an electrolyte solution containing 7.6 M HI and 0.05 M I2, while platinum plate was used as counter-electrode. The observed photo-voltages (Upv) and photocurrent densities (jpc) of the electrode were at ?0.75 V and 5.35 mA/cm2, respectively. Compared with electrodes of oxidized n-Si(111) crystal and n-Si(111) wafer covered by Ni-ferrites, jpc of the electrode Ni-ferrite/TiOx/Si(111) was increased greatly.  相似文献   

16.
In this study, Nb2O5 nanobelts, with a ca. ∼15 nm in thickness, ca. ∼60 nm in width and several tens of mircrometers in length, have first been used as the electrode material for lithium intercalation over the potential window of 3.0–1.2 V (vs. Li+/Li). It delivers an initial intercalation capacity of 250 mA hg−1 at 0.1 Ag−1 current density, corresponding to x = 2.5 for LxNb2O5, and can still keep relative stable and reaches as large as 180 mA hg−1 after 50 cycles. Surprisingly, the electrodes composed of Nb2O5 nanobelts can work smoothly even at high current density of 10 Ag−1, and shows higher specific capacity and excellent cycling stable, as well as sloped feature in voltage profile. Cycling test indicates Nb2O5 nanobelts electrode shows a high reversible charge/discharge capacity, high rate capability with excellent cycling stability.  相似文献   

17.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

18.
In order to absorb a broad spectrum in visible region, a co-sensitized TiO2 electrode was prepared by CdSe and Mg-doped CdSe quantum dots (Q dots). The power conversion efficiency of the co-sensitized Q dots photoelectrochemical solar cells (PECs) showed 1.03% under air mass 1.5 condition (I = 100 mW/cm2), which is higher than that of individual Q dots-sensitized PECs. The incident-photon-to-current conversion efficiency of the co-sensitized PECs showed absorption peaks at 541 and 578 nm corresponding to the two Q dots and displayed a broad spectral response over the entire visible spectrum in the 500–600 nm wavelength domains.  相似文献   

19.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

20.
This paper reports studies on time-resolved laser induced breakdown spectroscopy (LIBS) of plasmas induced by IR nanosecond laser pulses on the titanium oxides TiO and TiO2 (anatase). LIBS excitation was performed using a CO2 laser. The laser-induced plasma was found strongly ionized yielding Ti+, O+, Ti2 +, O2 +, Ti3 +, and Ti4 + species and rich in neutral titanium and oxygen atoms. The temporal behavior of specific emission lines of Ti, Ti+, Ti2 + and Ti3 + was characterized. The results show a faster decay of Ti3 + and Ti2 + ionic species than that of Ti+ and neutral Ti atoms. Spectroscopic diagnostics were used to determine the time-resolved electron density and excitation temperatures. Laser irradiation of TiO2-anatase induces on the surface sample the polymorphic transformation to TiO2-rutile. The dependence on fluence and number of irradiation pulses of this transformation was studied by micro-Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号