首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium(II) complexes of type [Pd(L)Cl2] [where, L?=?benzaldehyde-1,1-diphenyl-2-thiohydrazone (L1), salicylaldehyde-1,1-diphenyl-2-thiohydrazone (L2), acetaphenone-1,1-diphenyl-2-thiohydrazone (L3) and cyclohexanone-1,1-diphenyl-2-thiohydrazone (L4)] have been synthesized. The thiohydrazones can exist as thione-thiol tautomers and coordinate as a bidentate N–S ligand. The ligands are found to be monobasic bidentate. The complexes have been characterized by elemental analysis, IR, mass, electronic, 1H NMR spectroscopic studies. In vitro antifungal studies against fungi Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger for some complexes have also been carried out.  相似文献   

2.
Reaction of [Pd(1R,2R-diaminocyclohexane)Cl(2)] with the oxidised form of the tripeptide glutathione ([gamma]-l-glutamyl-l-cysteinyl-glycine) in aqueous solution leads to reductive cleavage of the disulfide bond.  相似文献   

3.
A series of distorted square planar palladium(II) complexes with dithiocarbamic acids of general formula [Pd(L)2], where L = 4-methylpiperazine-l-carbodithioic acid anion, morpholine-4-carbodithioic acid anion or 4-benzylpiperidine-l-carbodithioic acid anion for complexes 1a, 1b and 1c, respectively, have been synthesized. The complexes were characterized by physicochemical and spectroscopic methods; in addition, the structure of complex 1a was characterized by single crystal X-ray crystallography. The interaction of these palladium complexes with CT-DNA was investigated with the help of absorption and emission spectroscopy. The association constant K b was deduced from the absorption spectra, while the number of binding sites and the binding constant were calculated from the fluorescence quenching data. The results suggest an intercalative interaction of the complexes with CT-DNA.  相似文献   

4.
Half-sandwich complexes [(eta(6)-arene)RuCl(pyam)][SbF(6)] (pyam = L(n) = N-(2-pyridylmethyl)-(R)-1-phenylethylamine (L(1)), N-(2-pyridylmethyl)-(R)-1-naphthylethylamine (L(2)), N-(2-quinolylmethyl)-(R)-1-naphthylethylamine (L(3)), N-(2-pyridylmethyl)-(R)-1-cyclohexylethylamine (L(4)), N-(2-pyridylmethyl)-(1R,2S,4R)-1-bornylamine (L(5))) have been synthetised and characterised. Treatment of these compounds with AgSbF(6) generates dicationic complexes [(eta(6)-arene)Ru(pyam)(H(2)O)](2+) which act as enantioselective catalysts for the Diels-Alder reactions of methacrolein and cyclopentadiene. The catalytic reactions occur quickly at room temperature with good exo : endo selectivity (from 84 : 16 to 98 : 2) and moderate enantioselectivity (up to 74% ee). The molecular structures of the chloride complexes (R(Ru),S(N),R(C))-[(eta(6)-p-MeC(6)H(4)iPr)RuClL(1)][SbF(6)], (R(Ru),S(N),S(C2))-[(eta(6)-p-MeC(6)H(4)iPr)RuClL(5)][SbF(6)], and that of the aqua complex (R(Ru),S(N),S(C2))-[(eta(6)-p-MeC(6)H(4)iPr)RuL(5)(H(2)O)][SbF(6)](2), were determined by X-ray diffractometric methods. The distinctive variations observed in the molecular structures of these complexes only concern the puckering parameters of the metallacycle and the relative disposition of substituents within this ring. A clear trend to localise the most steric demanding substituents at equatorial positions is evident from the structural study.  相似文献   

5.
N‐Heterocyclic carbenes (NHCs) are of great importance and are powerful ligands for transition metals. A new series of sterically hindered benzimidazole‐based NHC ligands (LHX) ( 2a , 2b , 2c , 2d , 2e , 2f ), silver–NHC complexes ( 3a , 3b , 3c , 3d , 3e , 3f ) and palladium–NHC complexes ( 4a , 4b , 4c , 4d , 4e , 4f ) have been synthesized and characterized using appropriate spectroscopic techniques. Studies have focused on the development of a more efficient catalytic system for the Suzuki coupling reaction of aryl chlorides. Catalytic performance of Pd–NHC complexes and in situ prepared Pd(OAc)2/LHX catalysts has been investigated for the Suzuki cross‐coupling reaction under mild reaction conditions in aqueous N,N‐dimethylformamide (DMF). These complexes smoothly catalyzed the Suzuki–Miyaura reactions of electron‐rich and electron‐poor aryl chlorides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Two new Schiff base ligands 1 and 2 (where 1 = 4-(2-hydroxybenzilidenamino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate, 2 = 4-(4-(decyloxy)-2-hydroxybenziliden amino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate) and their copper (Cu)(II) complexes have been synthesised and characterised. The derivatives were fully characterised structurally, and their mesomorphic behaviour was investigated by polarised optical microscopyand differential scanning calorimetry. The structure of Cu(II) complex having 1 as ligand (3) was determined by X-ray diffraction. The Schiff base ligands exhibit enantiotropic nematic phases, the Cu(II) complex 4 shows monotropic nematic phase behaviour, while compound 3 does not show mesomorphism.  相似文献   

7.
A simple route to synthesise palladium(II) complexes from the reaction of N-substituted pyridine-2-thiocarboxamide ligands and PdCl(2)(PPh(3))(2) has been developed. The new complexes are very soluble in common solvents and have been fully characterised (elemental analysis, FT-IR, (1)H, (31)P, (13)C-NMR), including an X-ray diffraction analysis. The molecular structures of all the complexes were determined and reveal the presence of square planar geometry around Pd with little distortion. The complexes were tested in the Suzuki coupling of electronically deactivated aryl and heteroaryl bromides and were found to have much greater activity, without using any promoting additives or phase transfer agent under aerobic conditions. Higher reaction rates are obtained by varying R substituents on the aromatic ring of pyridine-2-thiocarboxamide. The effect of other variables on the cross-coupling reaction, such as temperature, solvent and base, is also reported.  相似文献   

8.
Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B=PPh(3), AsPh(3) or Py; L=hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh(3))(2)(B)] (where E=P or As; B=PPh(3), AsPh(3) or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, (1)H, (13)C and (31)P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.  相似文献   

9.
Palladium 3,7,13,17-tetramethyl-2,8,12,18-tetrabutylporphyrinate (I) and its 5,15-diaza (II), diphenyl (III), and di(4-bromophenyl) (IV) derivatives were synthesized by the complex formation reaction of palladium(II) chloride with corresponding tetrapyrrole ligands in dimethylformamide, and their spectral properties were studied.  相似文献   

10.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

11.
Ruthenium(II) complexes of the type, RuCl2(NO)(PPh3)(L2) (where L = amide ligand) have been synthesized and characterized on the basis of their elemental analysis IR, 1H-, 13C-, 31P-NMR spectra. Amide ligand behaved as a bidentate ligand. The probable structures of these complexes have been discussed. They were used as catalysts for the hydrolysis of drugs viz. rivastigmine tartrate and neostigmine bromide. The percent yields of hydrolyzed products of these drugs were determined spectrophotometrically.  相似文献   

12.
A series of new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = chalcone thiosemicarbazone) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with chalcone thiosemicarbazones in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, UV-vis, 1H, 31P and 13C NMR) methods. On the basis of data obtained, an octahedral structure was assigned for all of the complexes. The chalcone thiosemicarbazones behave as dianionic tridentate O, N, S donors and coordinate to ruthenium via the phenolic oxygen of chalcone, the imine nitrogen of thiosemicarbazone and thienol sulfur. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones and they were also found to be efficient catalysts for the transfer hydrogenation of carbonyl compounds.  相似文献   

13.
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu72-OH2)63-O)6(adenine)6](NO3)2·6H2O (1) and [Cu22-H2O)2(adenine)2(H2O)4](NO3)4·2H2O (2) are reported. The heptanuclear compound is composed of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn–Teller distorted octahedral coordination characteristic of a d9 center. The study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.  相似文献   

14.
The synthesis, structure, and magnetic properties of two new tetranuclear Cu(II) complexes containing N,N,N',N'-tetraethylpyridine-2,6-dithiocarboxamide (S-dept) of formula [Cu(2)Cl(2)(mu-S-dept)(2)][Cu(2)Cl(4)(mu-Cl)(2)] (1) and [Cu(2)(mu-Cl)(2)(S-dept)(2)][CuCl(3)(EtOH)](2) (2) are reported. Their X-ray crystal structures reveal that the complexes are composed of anionic and cationic dimers, that in both cases contain the metal centers which interact via Coulombic and/or hydrogen bonding interactions. In both cases, the Cu centers in the anionic moieties adopt a slightly distorted tetrahedral geometry whereas for the cationic moieties they adopt a square-pyramidal type of geometry. Magnetic susceptibility data show that compounds 1 and 2 present an overall antiferromagnetic behavior arising from the contribution of both anionic and cationic moieties. For 1, the best fit obtained gave J(1) = -2.62 +/- 0.19 cm(-1), J(2) = -19.54 +/- 0.47 cm(-1), and g(2) = 2.164 +/- 0.004 cm(-1) (R = 8.28 x 10(-5)) whereas for 2 it gave J(1) = 4.48 +/- 2.73 cm(-1), g(1) = 2.20 +/- 0.03, J(2) = -11.26 +/- 2.01 cm(-1), and g(2) = 2.10 +/- 0.03 (R = 1.15 x 10(-4)). The nature of the superexchange pathways in 1 and 2 is discussed on the basis of structural, magnetic, and molecular orbital considerations. Theoretical calculations are performed at the extended Huckel level in order to obtain their molecular orbitals and energies using their crystallographic data.  相似文献   

15.
Yi-Qiang Tang 《Tetrahedron》2010,66(40):7970-9483
Pd(II)-N-heterocyclic carbene complexes derived from proline have been successfully synthesized in good yields and their structures have been characterized by X-ray single crystal diffraction. It was found that the substituents on the N-atom of the pyrrolidine skeleton dramatically affect on the coordination pattern of the palladium complexes. In a word, when an electron-rich group as benzyl group was attached on the N-atom, both of the N-atom and NHC were coordinated to the Pd(II) center; while when an electron-poor group as Ts group was attached, a dimeric mono-coordinated Pd(II)-NHC was obtained exclusively.  相似文献   

16.
17.
The Pd(II) complexes of 1-aryl-5-benzazolyl- and 1,5-dibenzimidazolylformazans are synthesized and characterized by UV and IR spectroscopy, mass spectrometry, and magnetochemical studies. The complexes exhibit the intense absorption in the near-IR spectral region (820–1020 nm). The interaction of the complexes with amines leads to the transformation into binuclear palladium formazanates, which absorb at 620–680 nm and whose structures were confirmed by X-ray diffraction analysis.  相似文献   

18.
19.
A series of new ruthenium(II) complexes were synthesized with Schiff bases derived from salicylaldehyde / o-hydroxyacetophenone/ o-vanillin / 2-hydroxy-1-naphthaldehyde with thiosemicarbazide and acetyl furan. They are characterized by elemental analysis, IR, electronic, 1H NMR, 13C NMR and mass spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Four of these complexes were tested for its binding with CT-DNA using absorption spectroscopic studies and two of these complexes exhibit efficient DNA cleavage activity.   相似文献   

20.
New square-planar copper(II) complexes of 18-membered decaaza macrocyclic ligands: 5,6,14,15-tetramethyl-1,3,4,7,8,10,12,13,16,17-decaazacyclooctadecane (Me4[18]aneN10); 1,10-dimethyl-(Me2Me4[18]aneN10); 1,10-diethyl-(Et2Me4[18]aneN10); 1,10-dipropyl-(Pr2Me4[18]aneN10); 1,10-dibutyliso-(Bu2Me4[18]aneN10) and 1,10-dibenzyl-5,6,14,15-tetramethyl-1,3,4,7,8,10,12,13,16,17-decaazacylooctadecane [(Benzyl)2Me4[18]aneN10)] have been prepared by a one-pot template condensation of formaldehyde and 2,3-butanedihydrazone with alkyl and benzylamine in the presence of copper(II) ion. The complexes of the decaaza macrocycle have been characterized by elemental analyses, i.r., u.v.–vis., conductometric and magnetic measurements. The spectra of [Cu(R2Me4[18]ane N10)](ClO4)2shows that the four nitrogen (α-diimine) atoms are coordinated to the copper(II) ion. These complexes are found to be effective catalysts for the selective oxidation of tetrahydrofuran to yield the corresponding tetrahydrofuran-2-one and a small amount of tetrahydrofuran-2-ol and 4-hydroxybutyraldehyde, using diluted H2O2 as the oxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号