首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review surveys the enantiomeric separation of drugs by electrokinetic chromatography using polymeric chiral surfactant pseudostationary phases. These phases have recently been shown to provide better mass transfer and increased rigidity and stability than regular micelles in micellar capillary electrophoresis. Characterization of the polymeric chiral surfactants is presented. Solution interactions of the pseudostationary phases via thermodynamics and fluorescence probe studies are evaluated. Also, case studies of enantiomeric separation of drugs using a single amino acid surfactant and the synergistic effect of the addition of gamma-cyclodextrin to the buffer is discussed. The use of dipeptide surfactants for chiral drug separations is described as well.  相似文献   

2.
To better understand chiral recognition with polymeric amino acid based surfactants, the chromatographic performance of 18 monomeric and polymeric surfactants were compared for chiral analytes with various charge states and hydrophobicities. In this study, four amino acids (glycine, L-alanine, L-valine, and L-leucine) were chosen, and all possible combinations of the chiral single amino acid and dipeptide surfactants were synthesized. The results indicate that polymeric surfactants usually provide better chiral resolution for enantiomers of lorazepam, temazepam, 1,1'-bi-2-naphthol, and propranolol as compared to monomeric surfactants. In contrast, monomers perform better for chiral recognition of the 1,1'-bi-2-naphthyl-2,2'-diyl hydrogenphosphate enantiomers.  相似文献   

3.
In this study, 18 polymeric single amino acid and dipeptide surfactants are examined, and their performances, in terms of enantioselectivity, are compared for norlaudanosoline, laudanosoline, laudanosine, chlorthalidone, benzoin, benzoin methyl, and benzoin ethyl enantiomers. Several aspects of amino acid-based polymeric surfactants including comparison of single amino acid versus dipeptide, amino acid order, steric effect, and effect of the position of the chiral center of dipeptide surfactants on the chiral selectivity of these optically active compounds are discussed.  相似文献   

4.
Chiral separation of amino acids and peptides by capillary electrophoresis   总被引:3,自引:0,他引:3  
Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.  相似文献   

5.
Two polymeric dipeptide chiral surfactants (PDCSs), poly sodium N-undecanoyl isoleucyl-valinate (SUILV) with three chiral centers and poly sodium N-undecanoyl leucyl-valinate (SULV) with two chiral centers, have been evaluated and compared as chiral pseudo-stationary phases in electrokinetic capillary chromatography. The performance of these surfactants, in terms of enantioselectivity was examined using anionic, cationic and neutral analytes. Analyses of the data suggest that the enantiomeric resolutions of the analytes with these two PDCSs are dependent upon steric factors rather than number of stereogenic centers.  相似文献   

6.
The application of peptides in chiral separations using techniques such as capillary electrophoresis (CE), electrokinetic capillary chromatography (EKC) and liquid chromatography is the focus of this review. Methods for finding peptide selectors using combinatorial library approaches are discussed, as well as recent advances in the use of peptides as general chiral selectors for electrophoresis and liquid chromatography. One example shows the effectiveness of polymeric dipeptide surfactants as general chiral selectors for electrophoresis. Another example shows the versatility of oligoproline chiral stationary phases, exhibiting resolution for a number of racemic analytes comparable to other well-established chiral stationary phases.  相似文献   

7.
Divalent dipeptides have been introduced as counter ions in aqueous CZE. The dipeptides form ion pairs with amino alcohols in the BGE and facilitate the separation of amino alcohols. High concentrations of dipeptide caused reversed effective mobility for the analytes. The net charge of the dipeptide can be controlled using a buffer or a strong base, and regulates the interaction between the dipeptide and the amino alcohol. A stronger interaction and higher selectivity of amino alcohols was observed when the dipeptides were used as divalent counter ions, than in monovalent or uncharged form. Association constants for ion pairs between divalent dipeptides and amino alcohols can be used to enhance selectivity for amino alcohols in CZE. No chiral separation of amino alcohols was observed when using the dipeptides as ion‐pairing chiral selectors in aqueous BGE, but addition of methanol to the BGE promoted enantioselectivity.  相似文献   

8.
Several authors have recently reported the use of micelle polymers, polymer surfactants and dendrimers as pseudo-stationary phases in electrokinetic chromatography. These reports have demonstrated the effectiveness of these phases for a variety of applications, including the separation and analysis of hydrophobic compounds and chiral compounds and the application of mass spectrometric detection. This review covers developments in this area since the first introduction of polymeric pseudo-stationary phases in 1992. The use of polymeric micelles in electrokinetic chromatography is compared briefly with capillary electrochromatography. Some thoughts on future directions in this area are presented.  相似文献   

9.
Rizvi SA  Shamsi SA 《Electrophoresis》2007,28(11):1762-1778
In this work, six amino acid derived (L-leucinol, L-leucine, L-isoleucinol, L-isoleucine, L-valinol, and L-valine) polymeric chiral surfactants with carboxylate and sulfate head groups that were recently synthesized in our laboratory [30, 33, 35] are compared for the simultaneous enantioseparation of several groups of structurally similar analytes under neutral and basic pH conditions. The physicochemical properties of the monomers and polymers of both classes of sulfated and carboxylated surfactants are compared. In addition, cryogenic high-resolution electron microscopy showed tubular structures with distinct order of the tubes of 50-100 nm width. A Plackett-Burmann experimental design is used to study the factors that influence the chiral resolution and analysis time of ten structurally related phenylethylamines (PEAs). It is observed that increasing the number of hydroxy groups on the benzene ring of the PEAs resulted in deterioration of enantioseparation using any of the six polymeric surfactants. For all three classes of PEAs, polysodium N-undecenoxycarbonyl-L-amino acidate (poly-L-SUCAA)-type surfactants provided enhanced resolution compared to that of polysodium N-undecenoxycarbonyl-L-amino acid sulfates (poly-L-SUCAASS). Several classes of basic and neutral chiral compounds (e.g., beta-blockers benzoin derivatives, PTH-amino acids, and benzodiazepines) also provided improved chiral separations with poly-L-SUCAA. Among the poly-L-SUCAAs, polysodium N-undecenoxycarbonyl-L-isoleucine sulfate (poly--SUCL) exhibited overall the best enantioseparation capability for the investigated basic and neutral compounds, while among the poly-L-SUCAASs, polysodium N-undecenoxycarbonyl-L-isoleucine sulfate (poly-L-SUCILS), and polysodium N-undecenoxycarbonyl-L-valine sulfate (poly-L-SUCVS) proved to be equally effective for enantioseparation. This work clearly demonstrates that variation in the head group of polymeric alkenoxy amino acid surfactants has a significant effect on chiral separations.  相似文献   

10.
Poly(sodium undecenoyl-L-leucinate) (poly-L-SUL) was fractionated by the use of different molecular weight cutoff (MWCO) filters to narrow the polydispersity of the macromolecular sizes of the polymeric surfactant. The resulting polymeric surfactant fractions were characterized by the use of three techniques: (1) pulsed field gradient nuclear magnetic resonance (PFG-NMR) was used to determine the hydrodynamic radii, (2) analytical ultracentrifugation (AUC) was used to determine the molecular weights, and (3) steady-state fluorescence was used to determine the polarity of the nonfractionated and fractionated polymeric surfactants. From the data acquired from PFG-NMR, AUC, and fluorescence, it was noted that the hydrodynamic radii and molecular weight of the fractionated poly-L-SUL increased, while the polarity decreased with the increase in the size of the MWCO filter. However, a similarity in physical properties was observed between the nonfractionated and 10-30K fractionated poly-L-SUL except for the hydrodynamic radius and diffusion coefficients. The influence of different macromolecular sizes of poly-L-SUL on the chiral separation of phenylthiohydantion (PTH)-amino acids and coumarinic derivatives, as test analytes, was elucidated by the use of micellar electrokinetic chromatography (MEKC). The size of polymeric surfactants as a prerequisite for chiral separation was demonstrated by comparing the separation properties of fractionated versus nonfractionated polymeric surfactants. Fractionated poly-L-SUL resulted in enhanced resolution and separation efficiency of the test analytes as compared to the case of the nonfractionated poly-L-SUL. This observation indicates that minimizing polydispersity of polymeric surfactants may be important for some chiral separation applications.  相似文献   

11.
Akbay C  Gill NL  Agbaria RA  Warner IM 《Electrophoresis》2003,24(24):4209-4220
An achiral monomeric surfactant (sodium 10-undecenyl sulfate, SUS) and a chiral surfactant (sodium 10-undecenoyl L-leucinate, SUL) were synthesized and polymerized individually to form poly-SUS and poly-SUL. These surfactants were then copolymerized at various molar ratios to produce a variety of copolymerized surfactants (CoPSs), possessing both achiral (sulfate) and chiral (leucinate) head groups. The CoPSs, poly-SUS, poly-SUL, and sodium dodecyl sulfate were characterized using several analytical techniques. The aggregation numbers of the polymeric surfactants and the partial specific volumes were determined by the use of fluorescence quenching and density measurements, respectively. These polymeric surfactants were investigated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC) for the separation of chiral and achiral solutes. Solute hydrophobicity was found to have major influence on the MEKC retention of alkyl phenyl ketones. In contrast, hydrogen-bonding ability of benzodiazepines is the major factor that governs their retention, but hydrophobicity has an insignificant effect on MEKC retention of benzodiazepines.  相似文献   

12.
In this publication we present results on the determination of enantiomers of amino acids at very low concentrations. A fluoresceine-based chiral dye was synthesized to allow the separation of diastereoisomers of D- and L-amino acids. We used capillary electrophoresis with different non-ionic surfactants (Brij). The separation parameters were optimized and separations of D- and L-isovaline, an unusual terrestrial amino acid, were obtained. The sensitivity limits were also determined using a commercial laser-induced fluorescence detector. The quantitation of these amino acids is very important to understand the process of chiral selection on Earth.  相似文献   

13.
Hou J  Rizvi SA  Zheng J  Shamsi SA 《Electrophoresis》2006,27(5-6):1263-1275
Chiral micellar EKC (CMEKC) coupled to ESI-MS using polymeric surfactants as pseudostationary phases is investigated for simultaneous enantioseparation of two benzodiazepines, (+/-)-oxazepam ((+/-)-OXA) and (+/-)-lorazepam ((+/-)-LOR), and one benzoxazocine, (+/-)-nefopam ((+/-)-NEF). First, enantioselectivity and electrospray sensitivity of six chiral polymeric surfactants for all three chiral compounds are compared. Second, using poly(sodium N-undecenoyl-L-leucinate) as pseudostationary phase, the organic modifiers (methanol (MeOH), isopropanol, and ACN) are added into the running buffer to further improve chiral resolution (RS). Next, a CMEKC-ESI-MS method for the simultaneous enantioseparation of two benzodiazepines is further developed by using a dipeptide polymeric surfactant, poly(sodium N-undecenoxy carbonyl-L,L-leucyl-valinate) (poly-L,L-SUCLV). The CMEKC conditions including nebulizer pressure, capillary length, ammonium acetate concentration, pH, poly-L,L-SUCLV concentration, and capillary temperature were optimized to achieve maximum chiral RS and highest sensitivity of MS detection. The spray chamber parameters (drying gas temperature and drying gas flow rate) as well as sheath liquid conditions (MeOH content, pH, flow rate, and ionic strength) were found to significantly influence MS S/N of both (+/-)-OXA and (+/-)-LOR. Finally, a comparative study between simultaneous UV and MS detection showed high plate numbers, better chiral RS, and enhanced detectability with CMEKC-MS. However, speed of analysis was faster using CMEKC-UV.  相似文献   

14.
This paper describes enantiomer separation by aqueous liquid chromatography using chiral stationary phases (CSPs) in which temperature-responsive polymers derived from acryloyl-L-valine N-methylamide (1) and its N,N-dimethylamide analogue (2) were bound on silica gel supports. The linear polymers composed of monomer 1 and monomer 2 are temperature-responsive in solution and their aggregation and extension states related to water solubility are reversible at particular critical temperatures. During chromatography, enantioselectivity and retentivity for solute enantiomers were controlled by column temperature, which changes the aggregation and extension states of the chiral polymers depending upon their interior hydrophobic nature. Two different types of CSPs were made: a temperature-responsive linear polymer derived from 3-mercaptopropyl silica gel, and another polymer cross-linked with ethylene dimethacrylate from 3-methacryloyloxypropyl silica gel. The former CSP could separate racemic N-(3,5-dinitrobenzoyl(DNB))amino acid isopropyl esters. Retention of the amino acid derivatives was prolonged with an increase in column temperature. Enantioselectivity was also enhanced with temperature increase until the particular critical temperature. The latter, cross-linked CSP could not provide enantioselectivity for the amino acid derivatives in aqueous media, although the chiral valine diamide moieties were effective for enantiomer separation in non-aqueous media. The degree of hydrophobicity and volume of the bonded phase formed by the polymers on the support surface was determined by measuring the fluorescence of pyrene.  相似文献   

15.
Palmer CP 《Electrophoresis》2002,23(22-23):3993-4004
This review article details the development, characterization and application of polymeric materials as pseudostationary phases for electrokinetic chromatography over the past two years. Recent developments in cationic polymers and anionic siloxane, acrylamide and polymerized surfactants (micelle polymers) are reviewed. Also reviewed is recent progress in the development and characterization of chiral polymeric phases for chiral separations by electrokinetic chromatography, and application of a polymeric pseudophase with electrospray ionization mass spectrometric detection.  相似文献   

16.
The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids dl-methionine, dl-leucine, dl-valine and dl-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-l-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van’t Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.  相似文献   

17.
以4种不同的N-长链烷酰-L-氨基酸胶束为手性选择剂,对3种不同性质的手性化合物(α-氯代丙酰替苯胺,2-氨基-3-对硝基苯基-1,2-丙二醇和华法林)的毛细管胶束电动色谱分离进行研究.结果表明,手性表面活性剂中不同的氨基酸残基和烷基链的长度对分离影响较大;随手性表面活性剂浓度增加,溶质保留时间增大,分离度增加,不同溶质的最佳分离浓度在100~150mmol/L之间;pH对电中性手性化合物分离影响不大,但对酸性或碱性手性化合物的分离影响较大.在选定的条件下,3种样品均在20min内完全分离,分离柱效达1×105理论板数/m.  相似文献   

18.
The liquid chromatography enantiomeric separation of a series of 17 chiral sulfoxides was systematically investigated using multimodal elution with the new synthetic polymeric stationary phases P-CAP, P-CAP DP and DEAVB. The sulfoxide series was composed of aryl alkyl sulfoxides, benzoimidazole sulfoxides and the drugs modafinil, albendazole sulfoxide, omeprazole, lansoprazole, pantoprazole and rabeprazole. This work examines the effectiveness of the polymeric chiral stationary phases for the separation of chiral sulfoxides and describes the superiority of DEABV for these separations in three different elution modes. The first ever reversed phase enantiomeric separations on these columns is demonstrated.  相似文献   

19.
Several new stationary phases were prepared to study the structure-activity relationship of the chiral resolution of racemic 1,1'-bi-2-naphthol with a modified dipeptide Asn-Asn selector. The number of amino acid, the side chain protecting groups of the amino acid, and the Fmoc end-capping group all proved important for enantioselectivity. The linker also influenced enantioselectivity. Influence of the length of the linker appears to be related to the accessibility of chiral selectors. The bond through which the selector is attached to the linker proved important. Based on these results, it is postulated that hydrogen bonding interactions between one side chain amide group of one Asn and the oxygen on the backbone of another Asn with the two hydroxyl groups of the analyte play an important role in the resolution of racemic 1,1'-bi-2-naphthol with the modified dipeptide Asn-Asn selector.  相似文献   

20.
Chiral recognition of two binaphthyl derivatives and three benzodiazepines were studied by use of polymeric surfactants in electrokinetic chromatography. Four specific dipeptide terminated (multichiral) micelle polymers were synthesized for this study. These include poly (sodium-N-undecanoyl-L-alanyl-leucinate)-(poly L-SUAL), poly (sodium-N-undecanoyl-L-valyl-leucinate) (poly L-SUVL), poly (sodium-N-undecanoyl-Lseryl-leucinate) (poly L-SUSL), and poly(sodium-N-undecanoyl-L-threonyl-leucinate) (poly L-SUTL). In addition to the chiral separation study, the physicochemical properties (critical micelle concentration and specific rotation) of each polymer were investigated. The molecular weights of the various dipeptide-terminated micelle polymers were determined using analytical ultracentrifugation. These dipeptide-terminated micelle polymers were designed to study the effect of the extra heteroatom at the polar head group of the micelle polymer (i.e., poly L-SUSL compared to poly L-SUAL and poly L-SUTL compared to poly L-SUVL) on the enantiomeric separation of the binaphthyl derivatives and benzodiazepines. The synergistic effect of three chiral centers (poly L-SUTL) provided improved resolution over that of two chiral centered dipeptide-terminated micelle polymer in the case of (+/-)-temazepam, (+/-)-oxazepam, (+/-)-binaphthol, and (+/-)-binaphthol phosphate. The chiral recognition mechanisms in these cases were additionally controlled by the presence of the extra heteroatom located on the polar head group of the micelle polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号