首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to coat aluminosilicate clays on an inert silica support, and to characterize the properties and stability of the clay-silica coating. Two polymers, polyacrylamide (PAM) and polyvinyl alcohol (PVA), were used to bind kaolinite, illite, and smectite onto silica grains. The clay-polymer composites were studied by X-ray diffraction, FTIR, and electrophoretic mobility. Clay coatings on silica grains were characterized by mass coverage, scanning electron microscopy, specific surface area, and pH stability. Silica sand was successfully coated with clays by using the two polymers, but with PVA, the clay coating had a greater mass coverage and was more stable against pH variations. Less polymer was needed for the clay coating using PVA as compared to using PAM. Clay-polymer complexes and pure clay minerals had similar cation exchange capacities and electrophoretic mobilities, indicating that overall surface charge of the clays was little affected by the polymers. Some decrease in hydrophilicity was observed for illite and smectite when clays where coated with the polymers. The methodology reported here allows the generation of a clay-based porous matrix, with hydraulic properties that can be varied by adjusting the grain size of the inert silica support.  相似文献   

2.
Small-angle X-ray scattering of the clay minerals kaolinite, montmorillonite and illite was studied with a compact Kratky camera. From the scattering function, the correlation length, the Porod constant and the specific surface area were determined. The scattering functions also led to the surface fractal dimension. The pore volume distribution, the adsorption/desorption hysteresis, the specific surface area and the surface fractal dimension of the same samples were also determined by nitrogen adsorption at 77 K.  相似文献   

3.
This computational study performed using the density functional theory shows that hydrated and non-hydrated tetrahedral and octahedral kaolinite mineral surfaces in the presence of a cation adsorb the nucleic acid bases thymine and uracil well. Differences in the structure and chemistry of specific clay mineral surfaces led to a variety of DNA bases adsorption mechanisms. The energetically most predisposed positions for an adsorbate molecule on the mineral surface were revealed. The target molecule binding with the surface can be characterized as physisorption, which occurs mainly due to a cation-molecular oxygen interaction, with hydrogen bonds providing an additional stabilization. The adsorption strength is proportional to the number of intermolecular interactions formed between the target molecule and the surface. From the Atoms in Molecules analysis and comparison of binding energy values of studied systems it is concluded that the sorption activity of kaolinite minerals for thymine and uracil depends on various factors, among which are the structure and accessibility of the organic compounds. The adsorption is governed mostly by the surface type, its properties and presence of cation, which cause a selective binding of the nucleobase. Adsorbate stabilization on the mineral surface increases only slightly with explicit addition of water. Comparison of activity of different studied kaolinite mineral models reveals the following order for stabilization: octahedral-Na-water > octahedral-Na > tetrahedral-Na > tetrahedral-Na-water. Further investigation of the electrostatic potentials helps understanding of the adsorption process and confirmation of the active sites on the kaolinite mineral surfaces. Based on the conclusions that clay mineral affinity for DNA and RNA bases can vary due to different structural and chemical properties of the surface, a hypothesis on possible role of clays in the origin of life was made.  相似文献   

4.
Textural and energetic proprieties of kaolinite were studied by low-pressure argon adsorption at 77 K. The heterogeneity of four kaolinites (two low-defect and two high-defect samples) modified on their surface by cation exchange with Li+, Na+, or K+ was studied by DIS analysis of the derivative argon adsorption isotherms. The comparison between the derivative adsorption isotherms shows that the nature of the surface cation influences the adsorption phenomena on edge and basal faces. In the case of basal faces, two adsorption domains are observed: for the first one, argon adsorption is slightly sensitive to the nature of the surface cation; for the second one, argon adsorption energy depends on the nature of surface cation suggesting their presence on theoretically uncharged basal faces. This study also shows that the shape of elementary particles, as derived from basal and edge surface areas, changes with the nature of cation. This anomalous result is due to the decrease of edge surface area with increasing the size of the cation. This surface cation dependence can be accounted for the area occupied by the edge surface cations in the first argon monolayer.  相似文献   

5.
The aim of this study is to explain how clay minerals adsorb heavy metals individually and in the presence of humic acid, and to model heavy metal adsorption specifically based on surface-metal binary and surface-metal-ligand ternary complexation. The adsorption of Cu(II) and Pb(II) on kaolinite-based clay minerals has been modeled by the aid of the FITEQL3.2 computer program using single- and double-site binding models of the Langmuir approach. Potentiometric titrations and adsorption capacity experiments were carried out in solutions containing different concentrations of the inert electrolyte NaClO4; however, the modeling of binary and ternary surface complexation was deliberately done at high ionic strength (0.1 M electrolyte) for eliminating adsorption onto the permanent negatively charged sites of kaolinite. A "two-site, two pKa" model was adapted, and as for the two surface sites responsible for adsorption, it may be arbitrarily assigned that [triple bond]S1OH sites represent silanol and organic functional groups such as carboxyl having pKa values close to that of silanol, and [triple bond]S2OH sites represent aluminol and organic functional groups such as phenolics whose pKa values are close to that of aluminol, as all the studied clays contained organic carbon. Copper(II) showed a higher adsorption capacity and higher binding constants, while lead(II), being a softer cation (in respect to HSAB theory) preferred the softer basic sites with aluminol-phenol functional groups. Heavy metal cations are assumed to bind to the clay surface as the sole (unhydrolyzed) M(II) ion and form monodentate surface complexes. Cu(II) and Pb(II) adsorption in the presence of humic acid was modeled using a double-site binding model by the aid of FITEQL3.2, and then the whole system including binary surface-metal and surface-ligand and ternary surface-metal-ligand complexes was resolved with respect to species distributions and relevant stability constants. Electrostatic effects were accounted for using a diffuse layer model (DLM) requiring minimum number of adjustable parameters. Metal adsorption onto clay at low pH increased in the presence of humic acid, and the metal adsorption vs pH curves of metal-kaolinite-humic acid suspensions were much steeper (and distinctly S shaped) compared to the wider pH-gradient curves observed in binary clay-metal systems. The clay mineral in the presence of humic acid probably behaved more like a chelating ion-exchanger sorbent for heavy metals rather than being a simple inorganic ion exchanger.  相似文献   

6.
The feasibility of using two important and common clay minerals, kaolinite and montmorillonite, as adsorbents for removal of toxic heavy metals has been reviewed. A good number of works have been reported where the modifications of these natural clays were done to carry the adsorption of metals from aqueous solutions. The modification was predominantly done by pillaring with various polyoxy cations of Zr4+, Al3+, Si4+, Ti4+, Fe3+, Cr3+or Ga3+, etc. Preparation of pillared clays with quaternary ammonium cations, namely, tetramethylammonium-, tetramethylphosphonium- and trimethyl-phenylammonium-, N'-didodecyl-N, N'-tetramethylethanediammonium, etc, are also common. Moreover, the acid treatment of clays often boosted their adsorption capacities. The adsorption of toxic metals, viz., As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, Zn, etc., have been studied predominantly. Montmorillonite and its modified forms have much higher metal adsorption capacity compared to that of kaolinite as well as modified-kaolinite.  相似文献   

7.
Orthokinetic flocculation of clay dispersions at pH 7.5 and 22 degrees C has been investigated to determine the influence of interfacial chemistry and shear on dewatering and particle interactions behavior. Modification of pulp chemistry and behavior was achieved by using kaolinite and Na-exchanged (swelling) smectite clay minerals, divalent metal ions (Ca(II), Mn(II)) as coagulants and anionic polyacrylamide copolymer (PAM A) and non-ionic polyacrylamide homopolymer (PAM N) as flocculants. The pivotal role of shear, provided by a two-blade paddle impeller, was probed as a function of agitation rate (100-500 rpm) and time (15/60 s). Particle zeta potential and adsorption isotherms were measured to quantify the interfacial chemistry, whilst rheology and cryogenic SEM were used to investigate particle interactions and floc structure and aggregate network, respectively. Osmotic swelling, accompanied by the formation of "honeycomb" particle network structure and high yield stress, was produced by the Na-exchanged smectite, but not kaolinite, dispersions. Dispersion of the clay particles in 0.05 M Ca(II) or Mn(II) solution led to a marked reduction in particle zeta potential, complete suppression of swelling, honeycomb network structure collapse and a concomitant reduction in shear yield stress of smectite pulps. Optimum conditions for improved, orthokinetic flocculation performance of negatively charged clay particles, reflecting faster settling flocs comprised (i) coagulation, (ii) moderate agitation rate, (iii) shorter agitation time, and (iv) anionic rather than non-ionic PAM. The optimum dewatering rates were significantly higher than those produced by standard, manual-mixing flocculation techniques (plunging and cylinder inversion) commonly used in industry for flocculant trials. The optimum flocculation conditions did not, however, have a significant impact on the final sediment solid content of 20-22 wt%. Further application of shear to pre-sedimented pulps improved consolidation by 5-7 wt% solid. Higher shear yield stresses and greater settling rates were displayed by PAM A based than PAM N based pulps and this is attributed to the former's more expanded interfacial conformation and greater clay particles bridging ability. It appears that the intrinsic clay particles' physico-chemical properties and interactions limit compact pulp consolidation.  相似文献   

8.
Contact angles of aluminosilicate clays are difficult to determine. Not only does their small particle size present measurement difficulties, but contact angles may vary with relative humidity and cation composition. In this paper, we determined the effects of relative humidity and exchangeable cations on contact angles of three aluminosilicate clays (smectite, kaolinite, illite). Contact angles were measured on clay films with the sessile drop method under different relative humidity (19, 33, 75, 100%), and with clays saturated either with Na, K, Mg, or Ca. The results showed that the water contact angles on smectite increased with relative humidity between 19 and 75%, but for kaolinite and illite, little differences in water contact angles between 19 and 75% relative humidity were observed. For all three clays, however, the water contact angles decreased at 100% relative humidity as compared to the lower relative humidities. Cations affected not only the adsorption of water but also the surface charge, and both factors influenced the contact angles of the clays. Negligible effect of the different cations Na+, K+, Mg2+, or Ca2+ on contact angles was observed.  相似文献   

9.
Removal of lead ( Pb2+ ) ions from aqueous solution by adsorption onto surfactant-immobilized interlayer species bonded to montmorillonite clay (SIIS-clay) was investigated. Surfactant-immobilized interlayer chromate bound to clay (SIICr-clay) was prepared by treatment of montmorillonite clay with hexadecyltrimethylammonium (HDTMA) bromide followed by chromate adsorption at the intergallery framework of the clay. Experiments were carried out as a function of solution pH, solute concentration, and temperature (5-45 degrees C). The Dubinin-Kaganer-Radushkevich (DKR) model was adopted to describe the single-solute adsorption isotherms. Adsorption energy for lead ions on SIICr-clay computed from the DKR equation shows that a precipitation mechanism was operative. The thermodynamic parameters ( Delta G 0, Delta H 0, and Delta S 0) for lead ion adsorption on SIICr-clay were also determined from the temperature dependence. The kinetics of metal ion adsorption was examined and the first-order rate constant was finally evaluated. Adsorbed lead ions could be recovered completely on leaching with the disodium salt of ethylenediamine tetraacetic acid (EDTA) solution and the adsorbent was found to readsorb lead ions repeatedly after leaching. Thus, surfactant-modified smectite clays offer an effective method for designing a recyclable adsorbent for lead ions.  相似文献   

10.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

11.
DTA techniques were employed to study the thermal and structural characteristics of hydrated aluminium oxides and aluminous clays of the Pipra pelitic rocks from district Sidhi, India. Detailed microscopic investigations, X-ray and chemical analyses reveal that these clays were derived by the localized weathering of arkosic metasediments. The chemical and normative behaviours have confirmed their formation by the isochemical metamorphism of arkose, aided by a little granitization and followed by minor retrogression. A tentative correlation between the thermal and structural changes of these oxides and clay minerals at various transition temperatures has nicely displayed the presence of kaolinite, diaspore and gibbsite. The exothermic curves of kaolinite confirm the recrystallization. The presence of kaolinite in the clay fractions indicates the detrital origin.  相似文献   

12.
The sorption of nitrobenzene andn-pentanol from dilute aqueous solution on swelling clay minerals and their organophilized derivatives (organo clays) was studied. Adsorption excess isotherms were obtained by the immersion method. The basal spacings of the clay minerals were determined by X-ray diffraction measurements. By combining these two independent methods, composition and structure of the interlamellar space could be calculated. On the hydrophilic surface of montmorillonite negative adsorption of the organic component was observed at low molar fractions of nitrobenzene or pentanol, i.e., water was preferentially adsorbed. On organophilized montmorillonite and vermiculite adsorption of nitrobenzene and pentanol was positive over the whole range of liquid composition. The amount of interlamellar alkyl chains which is determined by the surface charge of clay mineral inversely affected the adsorption of both solutes.  相似文献   

13.
Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities.  相似文献   

14.
Comparative patterns of equilibrium adsorption of argon on the surface of graphitized thermal carbon black (GCB) and the inhomogeneous surfaces of nongraphitized carbon black and silica at 77 and 87.3 K were considered. It was shown that argon acquires the properties of a special phase with a layered structure and exhibits two-dimensional phase transitions with the formation of crystal-like layers near the homogeneous surface of GCB even at a temperature exceeding the triple point. However, already at a distance of three-four molecular diameters from the surface, adsorbed argon behaves as a bulk phase in a weak external field. The defect surface of nongraphitized carbon black and the amorphous surface structure of silica destroy the longrange order of adsorbed argon and lower its solidification temperature. Therefore, argon adsorbed at a temperature of 77 K, i.e., below the triple point, exhibits the properties of a supercooled liquid. The applicability of density functional theory to describe argon isotherms and heat of adsorption on inhomogeneous surfaces was demonstrated.  相似文献   

15.
The adsorption of isoproturon and two model compounds, N,N-dimethylurea and4-isopropylaniline, on clay minerals (bentonite,montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has been studied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressure liquid chromatography (HPLC) and X-ray diffraction (XRD).N,N-dimethylurea interacted with bentonite and montmorillonite by the coordination of the carbonyl group, directly or indirectly through water molecules, with exchangeable cations. Adsorption on humic acid was due to hydrogen bonding with the active sites of the adsorbent. The amino group ofN,N-dimethylurea appears tobe relatively inactive during adsorption. The mechanisms involved in the adsorption of 4-isopropylaniline were hydrogen bonding and protonation. No adsorption of 4-isopropylaniline was observed on kaolinite. The investigation of isoproturon suggested that both the carbonyl and amino groups of isoproturon were involved in interactions with the active sites of the adsorbents. Both the clay minerals and organic matter of soil contribute to the adsorption of organic compounds on soil but the clay minerals bentonite and montmorillonite play a major role in their adsorption on soil.  相似文献   

16.
The sorption of cesium and cobalt on kaolinite and montmorillonite were followed by radiotracer method. The sorption of cesium can be described by a Freundlich isotherm. Cobalt sorption on clays equilibrated in cesium chloride solutions significantly differs for kaolinite and montmorillonite due to their differences in sites available for cation sorption and changes in solution chemistry.Heterogeneous exchange of cesium ions between clay and the surrounding electrolyte was performed in order to obtain information about clay/electrolyte systems equilibration. An interplay of different processes included in the attainment of true chemical equilibria of clay/electrolyte systems are responsible for the change of clay surface properties and total exchange capacity.  相似文献   

17.
The adsorption of cadmium onto kaolinite and Muloorina illite in the presence of citric acid has been measured as a function of pH and cadmium concentration at 25 degrees C. When citric acid is present in the systems cadmium adsorption is slightly enhanced below pH 5, but significantly suppressed between pH 5 and 8, for both substrates. At higher citric acid concentrations very little cadmium adsorbs onto kaolinite from pH 5 to 8. Above pH 8 adsorption of Cd(II) onto illite is enhanced in the presence of citric acid, especially at lower concentrations, but this does not occur for kaolinite. Adsorption and potentiometric titration data were fitted by simple extended constant-capacitance surface complexation models for the two substrates. Enhancement of adsorption at lower pH values was ascribed to the ternary reaction [X(-)--K(+)](0)+Cd(2+)+L(3-)+2H(+) right arrow over left arrow (0)+K(+) involving outer-sphere complexation with permanently charged X(-) sites on the "silica" faces of both clay minerals. The models suggested that suppression of adsorption in the intermediate pH range was due to the formation of a strong CdL(-) solution complex which adsorbed neither on the permanently charged sites nor on the surface hydroxyl groups at the edges of the clay crystals. At higher pH values the dominant solution complex, CdLOH(2-), apparently adsorbed as an outer-sphere complex at surface hydroxyl groups on illite, SOH+2Cd(2+)+L(3-) right arrow over left arrow [SOCd(+)--CdOHL(2-)](-)+2H(+), but not on kaolinite. This difference in behavior results from the presence of =FeOH groups on the illite surface which can form surface complexes with CdLOH(2-), while the =AlOH groups on the kaolinite surface cannot.  相似文献   

18.
Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.  相似文献   

19.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

20.
The adsorption of atrazine and two model compounds,2-chloropyrimidine and 3-chloropyridine on clay minerals(bentonite, montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has beenstudied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressureliquid chromatography (HPLC) and X-ray diffraction (XRD).3-Chloropyridine, 2-chloropyrimidine and atrazine were adsorbedthrough hydrogen bonding on bentonite, montmorillonite, humic acid and soil. In addition tohydrogen bonding, protonation of 3-chloropyridine and atrazine was also observed.In the adsorption of 2-chloropyrimidine on bentonite and montmorillonitean ion exchange mechanism also occurred. No adsorption of 3-chloropyridine or 2-chloropyrimidine wasobserved on the kaolinite clay mineral.Both the clay minerals and organic matter of soil contribute tothe adsorption of organic compounds on soil but the clay minerals bentonite and montmorilloniteplay a major role in their adsorption on soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号