首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

2.
This paper examines the formulation of new porogenic mixtures used to prepare molecularly imprinted polymers (MIPs) in both thin film and bulk monolith formats. Films were cast by using spin coating to spread a pre-polymerization mixture onto a substrate, and rapid curing of the films was achieved with UV photolysis. The use of a low volatility solvent in combination with a linear polymer porogen resulted in a porous morphology and a 60-fold enhancement in the binding capacity, relative to a non-porous film prepared with a highly volatile solvent and in the absence of the polymer porogen. The opposite effect was seen in MIPs that were prepared in the traditional bulk monolith format, for which the binding efficiency of the MIP decreased monotonically with the concentration of the linear polymer porogen. Furthermore, bulk MIPs that were prepared in the presence of linear polymer porogens exhibited significantly decreased specific surface areas (from 620 to 8 m2/g for samples prepared with pure solvent and 50% polymer porogen, respectively). Despite the change in binding capacity and morphology, the selectivity of the bulk MIPs remained unaffected by the presence of the polymer porogens (approximately 50% chiral selectivity for all bulk MIPs considered). This difference in behavior of the two systems was attributed to the large difference in the kinetics of polymerization.  相似文献   

3.
Using caffeic acid and p-hydroxybenzoic acid as templates, two molecularly imprinted polymers (MIPs) were prepared that were used for isolation of polyphenols from olive mill waste water samples (OMWWs) without previous pre-treatment. For the preparation of the caffeic acid MIPs 4-vinylpyridine, allylurea, allylaniline and methacrylic acid were tested as functional monomers, ethylene glycol dimethylacrylate (EDMA), pentaerythritol trimethylacrylate (PETRA) and divinylbenzene 80 (DVB80) as cross-linkers and tetrahydrofuran as porogen. For p-hydroxybenzoic acid 4-vinylpyridine, allylurea and allylaniline were tested as functional monomers, EDMA and PETRA as cross-linkers and acetonitrile as porogen. The performance of the synthesized polymers was evaluated against seven structurally related compounds by means of polymer-based HPLC. The two polymers that presented the most interesting properties were further evaluated by batch rebinding and from the derived isotherms their capacity and binding strength were determined. Using solid-phase extraction (SPE), their ability to recognize and bind the template molecule from an aqueous solution as well as the pH dependence of the binding strength were explored. After establishing the best SPE protocol, an aqueous model mixture of compounds and a raw OMWWs sample were loaded on the two best polymers. The result of the consecutive use of the two polymers on the same sample was explored. It was concluded that acidic conditions favour the recognition abilities of both polymers and that they can be used for a quick and efficient isolation of the polyphenol fraction directly from raw OMWW.  相似文献   

4.
Some new molecularly imprinted polymers (MIPs) were prepared by different protocols involving vanillin as the imprinted molecule, methacrylic acid (= 2‐methylprop‐2‐enoic acid; MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA = 2‐methylprop‐2‐enoic acid ethane‐1,2‐diyl ester) as the cross‐linking agent. The adsorption property of the imprinted polymers was studied by UV spectrophotometry and HPLC. The results indicated that the porogen solvent had a certain influence on the adsorption performance of the polymer. The vanillin‐imprinted polymer MIP1 prepared with MeOH as porogen, exhibited advantageous characteristics, i.e., a high binding activity, a good selectivity, and a rapid adsorption equilibrium. The binding parameters studied by Scatchard analysis established that there are two types of binding sites in MIP1. Finally, by packing an SPE column (SPE = solid‐phase extraction) with the polymer MIP1, the vanillin was separated and enriched successfully by this sorbent from the samples of Vanilla fragrans and beer.  相似文献   

5.
Diazinon imprinted sorbent can be a useful tool for selective enrichment, clean-up, and purification methods. In this study, investigation of synthesis and evaluation of diazinon imprinted polymers has been performed using equilibrium binding experiments. It is possible to use molecularly imprinted polymers as sorbents for anti-choline esterase (Anti-ChE) organophosphate pesticides (Ops). It has been found that MAA monomer is most suitable for the preparation of appropriate diazinon molecularly imprinted polymers (MIPs). The type of porogen also influences the binding results. The best porogen for diazinon imprinting is chloroform due to its poor hydrogen bonding capacity.  相似文献   

6.
Uniformly-sized molecularly imprinted polymers (MIPs) for (S)-nilvadipine have been prepared by a multi-step swelling and polymerization method using methacrylic acid or 4-vinylpyridine (4-VPY) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, and toluene, chloroform, cyclohexanol or phenylacetonitrile as a porogen. The chiral recognition abilities of the MIPs for nilvadipine were evaluated using aqueous and non-aqueous mobile phases. Among the MIPs, the (S)-nilvadipine-imprinted 4-VPY-co-EDMA polymers prepared using toluene as a porogen showed the highest recognition ability for nilvadipine in both aqueous and non-aqueous mobile phases. In addition to molecular shape recognition, hydrogen-bonding interactions of the NH proton of nilvadipine with a pyridyl group of the (S)-nilvadipine-imprinted 4-VPY-co-EDMA polymers could play an important role in the retention and chiral recognition of nilvadipine in aqueous and non-aqueous mobile phases. Furthermore, the MIP for (S)-nilvadipine gave the highest molecular recognition ability when a porogenic solvent during polymerization was used as the mobile phase modifier.  相似文献   

7.
A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL?1). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high‐performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5–1000 ng g?1 with the limit of detection between 0.3 and 0.5 ng g?1 for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4–98.3% with the relative standard deviation ≤4.9.  相似文献   

8.
董襄朝  王薇  王海波  孙慧  李琰  王宁  刘淑霞 《色谱》2005,23(1):7-11
印迹聚合物合成条件对聚合物性能的影响是分子印迹技术中的一项重要研究内容。以左旋麻黄碱为印迹分子,甲基丙烯酸为功能单体,使用不同的交联剂和致孔剂合成了印迹聚合物,并对所得到的印迹聚合物的比表面积、孔结构和结合特性进行了评价。研究结果说明合成的印迹聚合物对印迹分子具有很好的亲和能力及选择性。致孔剂可以影响聚合物比表面积的大小及单体组成。氯仿是甲基丙烯酸-乙二醇二甲基丙烯酸酯和甲基丙烯酸-季戊四醇三丙烯酸酯聚合链的良溶剂,导致了比表面积及孔容较小的聚合物结构;而以乙腈为致孔剂得到的聚合物有较大的比表面积。共聚物中羧基含量的测定结果也说明,在预聚溶液中单体浓度相同的条件下,以不同的致孔剂进行合成得到的聚合物中甲基丙烯酸的比例不同。聚合物的比表面积及单体浓度的差别都可能导致聚合物的结合容量不同。  相似文献   

9.
Porous/magnetic molecularly imprinted polymers (PM‐MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross‐linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as‐made PM‐MIPs. The characterization demonstrated that the PM‐MIPs were porous and magnetic inorganic–polymer composite microparticles with magnetic sensitivity (Ms = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0–8.0). The PM‐MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM‐MIPs was well described by pseudo‐second‐order kinetics, indicating that the chemical process could be the rate‐limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM‐MIPs for target LC. Moreover, the PM‐MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles.  相似文献   

10.
In this work, styrene (St) based crosslinked polymers were prepared for removal of oil derivatives from aqueous solutions. Polyethylene glycol (600) dimethacrylate (PEG (600) DMA) was used as crosslinker in synthesis of styrene based crosslinked polymers, for the first time. The polymers were characterized by FTIR, SEM, elemental analysis and solvent (toluene, chloroform and fuel-oil) absorption capacities. The effects of different reaction parameters like crosslinker type, diluents amount and the presence of pore forming agent on the absorption properties of polymers were investigated. The polymers synthesized by using PEG (600) DMA have higher solvent absorption capacity than that of synthesized by using conventional crosslinker. Furthermore, the polymers synthesized in the presence of good diluents have higher absorption capacities. The addition of pore forming agent into the reaction medium has also improved the absorption rate of polymers. The absorption capacity of polymers in different solvents is in order of chloroform > toluene > fuel-oil. It was seen that oil derivatives can be removed efficiently from water by the St-PEG (600) DMA polymers.  相似文献   

11.
One of the main challenges in the molecularly imprinted polymers (MIP) field is the proper MIP design for water-soluble compounds because of appearance of serious drawbacks in polar solvents and insolubility of those compounds in non-polar solvents which are commonly used for MIP synthesis. In this work a novel and simple method for synthesis of molecularly imprinted polymers for a water-soluble compound was introduced. Pyridoxine was chosen as a target molecule and the ion-pair complex formed between pyridoxine ion (Py+) and dodecyl sulfate ion (DS) was transferred into the chloroform via liquid-liquid extraction. Then polymerization was carried out in chloroform. The molecular mechanics and density functional theory were proposed to screen proper monomer. Binding energy, ΔE, of a template and a monomer as a measure of their interaction was considered. Ion-pair [Py+-DS] was supposed as a template molecule and acrylic acid, methacrylic acid, allyamine, vinylpridine and 2-hydroxy ethyl methacrylate were as tested monomers. The MIP synthesized using acrylic acid showed the highest selectivity to pyridoxine as predicted from the ΔE calculation. The obtained MIP showed very high affinity against vitamin B6 in comparison to non-imprinted polymers (NIP). It was proved that the obtained MIP with introduced method was much better than that prepared in methanol as porogen. It was showed that the MIP prepared by this new method could be used as an adsorber for extraction and determination of pyridoxine in real and synthetic samples.  相似文献   

12.
New ion-imprinted polymeric (IIP) materials were synthesized by copolymerization of 4-vinylpyridine (VP) and styrene as functional monomers and divinylbenzene as a cross-linking agent with chelating complexes of Pd(II) in the presence of 2,2-azobisisobutyronitrile as an initiator. The complexes of Pd(II) with ammonium pyrrolidinedithiocarbamate (APDC), N,N′-diethylthiourea (DET), and dimethylglyoxime (DMG) were used for this purpose. Chloroform, ethanol, and cyclohexanol were applied as porogens. The ion-imprinted polymers were tested in a flow mode as sorbents for solid-phase extraction of palladium from aqueous solutions. The conditions of Pd(II) separation on all polymers were optimized. The efficiencies of retention of Pd on different polymers in the presence of high excess of interfering ions were compared. The effect of the used porogen on the analytical performance of the prepared polymers was also investigated. The calculated sorbent capacities for Pd(II) were in the range from 9.25 mg g−1 to 13.3 mg g−1. The sorbent with Pd(II) imprinted as Pd-DMG-VP complex in chloroform was used for preconcentration of trace amounts of Pd. The detection limit for 100 mL of the sample was 5 μg L−1 using flame atomic absorption spectrometry (FAAS). The developed method was applied for the determination of Pd in water samples.  相似文献   

13.
香豆素分子模板聚合物的合成与性能研究   总被引:2,自引:0,他引:2  
以香豆素为模板分子, α-甲基丙烯酸(MAA)、丙烯酰胺(MA)、2-乙烯基吡啶(2-VP)和4-乙烯基吡啶(4-VP)为功能单体, 二甲基丙烯酸乙二醇酯(EGDMA)为交联剂, 利用分子模板技术分别在甲苯、甲醇、氯仿和乙腈溶剂中合成了一系列香豆素分子模板聚合物(MTP), 研究了聚合体系组成对模板聚合物吸附特性的影响. 结果表明, 在所合成的模板聚合物中, 以MAA为功能单体, 乙腈为致孔溶剂, 以1∶4∶30的摩尔比加入模板分子、MAA及EGDMA时制备的模板聚合物吸附容量高、印迹效果和选择性好. 此模板聚合物有作为白芷样品中香豆素吸附分离材料的应用前景.  相似文献   

14.
A novel molecularly imprinted polymers (MIPs) coated micro‐stir bar (MSB) for Glibenclamide (GM) was developed. The MIPs, with GM as template molecular and methacrylic acid as functional monomer, were synthesized at the surface of the silylated MSB that was filled with magnetic core as substrate. Computational simulation was used for the optimal selection of functional monomers and porogen. The thickness of MIPs coating for MSB was about 10 μm, the adsorption and desorption time were about 40 and 20 min, respectively. The MIPs coated MSB possessed mechanical stability, high adsorption capacity, and good selectivity for GM. To achieve the optimum extraction performance, several parameters including extraction and desorption time, stirring rate, extraction and desorption solvent were investigated. A method for the determination of GM in herbal dietary supplements by MIPs coated MSB coupled with HPLC‐UV was established. The results exhibited good linear ranges of 10–6250 μg L?1 with the low limit of detection of GM (3.05 μg L?1) and the good recoveries (81.9–101.4%).  相似文献   

15.
In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid‐phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid‐phase extraction coupled to high‐performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1–150 ng/mL for berberine and 0.1–100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33–102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22–111.15% with relative standard deviation less than 4.59% in plasma.  相似文献   

16.
A molecularly imprinted polymer (MIP) was prepared using (?)‐norephedrine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker and chloroform as the porogen. The MIP was used as a selective sorbent in the molecularly imprinted solid‐phase extraction (MIP‐SPE) of the psychoactive phenylpropylamino alkaloids, norephedrine and its analogs, cathinone and cathine, from Khat (Catha edulis Vahl. Endl.) leaf extracts prior to HPLC‐DAD analysis. The MIP was able to selectively extract the alkaloids from the aqueous extracts of Khat. Loading, washing and elution of the alkaloids bound to the MIP were evaluated under different conditions. The clean baseline of the Khat extract obtained after MIP‐SPE confirmed that a selective and efficient sample clean‐up was achieved. Good recoveries (90.0–107%) and precision (RSDs 2.3–3.2%) were obtained in the validation of the MIP‐SPE‐HPLC procedure. The content of the three alkaloids in Khat samples determined after treatment with MIP‐SPE and a commercial Isolute C18 (EC) SPE cartridge were in good agreement. These findings indicate that MIP‐SPE is a reliable method that can be used for sample pre‐treatment for the determination of Khat alkaloids in plant extracts or similar matrices and could be applicable in pharmaceutical, forensic and biomedical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
苄嘧磺隆印迹聚合物的波谱分析及吸附性能研究   总被引:2,自引:0,他引:2  
以苄嘧磺隆为模板分子, α-甲基丙烯酸为功能单体, 三甲氧基丙烷三甲基丙烯酸酯为交联剂, 二氯甲烷为致孔剂, 在20 ℃温度下, 采用紫外引发沉淀聚合方法制备了苄嘧磺隆分子印迹聚合物. 紫外光谱和核磁共振氢谱实验提示了聚合前模板分子与功能单体之间的相互作用主要是分子间氢键, 分子间氢键相互作用能和双氢键的键距由Hyperchem 7.0和Gaussian 03W软件分别计算为: -28.6163 kJ/mol和0.179~0.181 nm. 制备的印迹聚合物在高效液相色谱和吸附动力学实验中都表现出对模板分子有较强的吸附作用.  相似文献   

18.
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction. Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin  相似文献   

19.
Intermolecular association of some polystyrene and poly(methyl methacrylate) (PMMA) samples bearing sulphate and/or sulphonate end-groups prepared by using the redox initiator systems K2S2O8 + NaHSO3, Na2SO3 + Cu2+, NaHSO3 + O2 has been studied for dilute solutions in toluene, chloroform, o-dichlorobenzene, tetrahydrofuran (THF) and ethyl acetate respectively by viscometry and in toluene and THF by osmometry. Significant association of the polymers occurs in toluene, chloroform and o-dichlorobenzene in the dilute solutions used in this work. However, association is significantly reduced in chloroform containing 2% ethanol or in toluene containing 2% methanol. Tetrahydrofuran appears to be the preferred solvent for determining the molecular weights of such polymers, since association is insignificant in this solvent.  相似文献   

20.
Advanced SPE with molecularly imprinted polymers (MIP) was used in this study. A noncovalent imprinting approach was applied to separate 17β‐estradiol, estriol, and estrone from water samples. Polymer material was prepared by bulk polymerization with methacrylic acid as a functional monomer, divinylbenzene and ethyleneglycol dimethacrylate as crosslinkers, and acetonitrile, acetonitrile/toluene (3:1, v/v) or isooctane/toluene (1:99, v/v) as a porogen. We also prepared an MIP film on a silica gel surface with methacrylic acid and ethyleneglycol dimethacrylate as monomers and acetonitrile as a solvent. Qualitative and quantitative hormone analyses were carried out by HPLC with various detection techniques, including UV/visible spectroscopic detection (diode array detection) and electrochemical detection (CoulArray). The results of the study indicate that MIP technology is an excellent method for the quality control of estrogens in environmental analyses with a low quantification limit for 17β‐estradiol of around 26 (diode array detection) and 0.25 ng/mL (electrochemical detection). The proposed method was found to be suitable for routine determinations of the analyzed compound in environmental laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号