首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
岳春月  丁国生  唐安娜 《色谱》2013,31(1):10-14
依据分子印迹技术(MIT)制备的分子印迹聚合物(MIP)颗粒对模板分子及其结构类似物具有特异性识别和选择性吸附作用,同时具有较大的比表面积和快速的传质动力学特性,因而被广泛用作液相色谱固定相和固相萃取材料。将MIP颗粒作为固定相应用于毛细管电色谱(CEC),结合了CEC的快速、高效和MIP的高亲和性、高选择性的特点,成为分析科学领域最具有发展前景的分离技术之一。MIP颗粒在CEC领域有几种不同的应用形式: 作为填充材料填充到毛细管柱中;作为嵌入材料嵌入到毛细管柱内部不同基质的骨架中;作为准固定相添加到CEC运行缓冲溶液中。本文综述了近几年MIP颗粒在CEC领域应用的发展,对该领域今后的发展前景进行了展望。  相似文献   

2.
Water-compatible pefloxacin-imprinted monoliths synthesized in a water-containing system were used for the selective extraction of fluoroquinolones (FQs). The MIP monolith was synthesized by using methacrylic acid as the functional monomer, di(ethylene glycol) dimethacrylate as a cross-linker and methanol–water (10:3, v/v) as the porogenic solvent. The ability of the derivated MIP for selective recognition of FQs (ciprofloxacin, difloxacin, danofloxacin and enrofloxacin) and quinolones (flumequine, and oxolinic acid) was evaluated. The derivated monolith showed high selectivity and was able to distinguish between FQs and quinolones. A simple rapid and sensitive method using polymer monolith microextraction (PMME) based on the MIP monolith combined with HPLC with fluorescence detection was developed for the determination of four FQs from milk samples. Owing to the unique porous structure and flow-through channels in the network skeleton of the MIP monolith, phosphate buffer diluted milk samples were directly supplied to PMME; allowing non-specific bound proteins and other biological matrix to be washed out, and FQs to be selectively enriched. The limit of detection of the method was 0.4–1.6 ng/mL and recovery was 92.4–98.2% with relative standard deviations less than 5.9%.  相似文献   

3.
4.
A method constituted by molecularly imprinted solid-phase extraction (MISPE) with high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) was developed for cotinine analysis in saliva samples. For this purpose, the separation was carried out with a C18 reversed-phase column at 20 °C. The mobile phase which was composed of a mixture of 09:91 (v/v) acetonitrile/phosphate buffer, pH 6.3, was delivered with isocratic flow rate at 1.4 mL min−1. Employing MISPE, the best conditions were achieved with 1.5 mL of saliva plus 1.5 mL of 0.1 mol L−1 of acetate buffer, pH 5.5, which were then passed through a cartridge previously conditioned with 2 mL acetonitrile, 2 mL methanol, and 2 mL of 0.1 mol L−1 sodium acetate buffer, pH 5.5. The washing was carried out with 1 mL deionized water, 1 mL of 0.1 mol L−1 sodium hydroxide, and 1 mL hexane; finally; the cotinine elution was carried out with 3 mL methanol/water (97.5: 2.5, v/v). Linearity ranged from 30 to 500 ng mL−1 with r > 0.99. Intra-assay, interassay precision, and accuracy ranged from 3.1% to 10.1%, 5.2% to 15.9%, and 99.22% to 111.17%, respectively. The detection and quantification limits were 10 and 30 ng mL−1, respectively. This investigation has provided a reliable method for routine cotinine determination in saliva, and it is an important tool for monitoring cigarette smoke exposure in smokers. The method was applied in five smokers’ samples who consumed around five to 20 cigarettes per day and the values of cotinine in saliva were from 66.7 to 316.16 ng mL−1.  相似文献   

5.
A novel water-compatible molecularly imprinted polymer (MIP), prepared with enrofloxacin (ENR) as the template, has been optimised for the selective extraction of fluoroquinolone antibiotics in aqueous media. The results of a morphological characterisation and selectivity tests of the polymer material for ENR and related derivatives are reported. High affinity for the piperazine-based fluoroquinolones marbofloxacin, ciprofloxacin, norfloxacin and ofloxacin was observed, whereas no retention was found for nonrelated antibiotics. Various parameters affecting the extraction efficiency of the polymer have been optimised to achieve selective extraction of the antibiotics from real samples and to reduce nonspecific interactions. These findings resulted in a MISPE/HPLC-FLD method allowing direct extraction of the analytes from aqueous samples with a selective wash using just 50% (v/v) organic solvent. The method showed excellent recoveries and precision when buffered urine samples fortified at five concentration levels (25–250 ng mL−1 each) of marbofloxacin, ciprofloxacin, norfloxacin, enrofloxacin and sarafloxacin were tested (53–88%, RSD 1–10%, n = 3). Moreover, the biological matrix of the aqueous samples did not influence the preconcentration efficiency of the fluoroquinolones on the MIP cartridges; no significant differences were observed between the recovery rates of the antibiotics in buffer and urine samples. The detection limits of the whole process range between 1.9 and 34 ng mL–1 when 5-mL urine samples are processed. The developed method has been successfully applied to preconcentration of norfloxacin in urine samples of a medicated patient, demonstrating the ability of the novel MIP for selective extraction of fluoroquinolones in urine samples.  相似文献   

6.
A monolithic solid-phase microextraction (SPME) fibre was fabricated based on a molecularly imprinted polymer that could be coupled with gas chromatography for extraction, and determination of chlorpyrifos. The time of extraction, pH, temperature and ionic strength were investigated as important factors on the extraction procedure. The fabricated fibre was firm, inexpensive, stable and selective which gave it vital importance in SPME. The selectivity of the fabricated fibre in relation to analogue compounds was also investigated. Under the optimum conditions, the calibration curve was linear in the range of 1–20 mg L?1 (R2 = 0.9899). The high extraction efficiency was obtained for chlorpyrifos with a detection limit of 0.23 mg L?1. The fabricated fibre was successfully applied to SPME of chlorpyrifos from apple and grape fruits after its extraction and followed by gas chromatography-flame ionisation detector analysis.  相似文献   

7.
A cross‐linked methacrylate molecularly imprinted polymer (poly‐4‐vinylpyridine‐co‐trimethylolpropane‐trimethacrylate) selective for bisphenol A (BPA) was synthesized, using a fluorinated BPA derivative (4,4′‐(hexafluoroisopropylidene)‐diphenol) as a mimic template, and applied to the analysis of real‐world samples of process and potable waters. The molecularly imprinted polymer also showed a high affinity and selectivity for 17‐β‐estradiol and ethynylestradiol. A method to analyze BPA, 17‐β‐estradiol, and ethynylestradiol at ultratrace levels was thus developed from a screening procedure to monitor endocrine‐disrupting chemicals in water samples. The method consists of the BPA‐selective cleanup by molecularly imprinted SPE using cartridges packed with the polymer developed, its recovery by stir bar sorptive extraction after ad hoc derivatization to obtain the corresponding BPA‐acetate, and its analysis by GC‐time window‐SIM‐MS after online thermal desorption. The method showed good linearity in the working range (R2=0.9969), high repeatability (RSD% <10.1), recoveries always above 90%, and very low LOD (10 pg/L) and LOQ (1 ng/L) and can easily be extended to the determination of 17‐β‐estradiol and ethynylestradiol ultratraces. The method's effectiveness was evaluated by analyzing the real‐world water samples; it enabled preconcentration and detection of BPA at ultratrace levels.  相似文献   

8.
Five molecularly imprinted polymers (MIPs) were synthesized for a large molecule, avermectin, using different preparation techniques, monomers, and polymerization solvents. Selectivities (α) of each were compared using HPLC and different mobile phases containing various levels of acetic acid. Selectivity (α) for avermectin was greatest (α estimated ≥18) when the polymer was prepared non-covalently (utilizing only non-covalent interactions between avermectin and monomer) in chloroform using methacrylic acid (MAA) monomer and evaluated in chloroform. When evaluated in acetonitrile, an MIP prepared in acetonitrile provided better selectivity (α=8.4) than the polymer prepared in chloroform. Optimizing mobile phase conditions by adding acetic acid was much more important when MIPs were evaluated in chloroform than in acetonitrile. MIPs prepared with MAA provided better selectivity than a polymer prepared with acrylamide monomer. Covalent preparation of two MIPs utilizing a covalent bond between avermectin and monomer before polymerization did not improve selectivity but did improve peak shape in chromatograms. Specificity was demonstrated by comparing the selectivity of avermectin with eprinomectin (α=3.0), a compound with a very similar structure. Results indicate that an MIP can be prepared for the large avermectin molecule, and has the potential to simplify sample preparation and to reduce the time needed for analysis.  相似文献   

9.
We describe a rapid, sensitive, fluorescent screening test for xylenes in water samples that avoids more costly time-consuming methods. The screening test is based on a molecularly imprinted polymer and it runs without the need for any pre-concentration step, thus rendering it suitable for routine use in water-quality-control laboratories. The test recognizes contaminated samples rapidly (50 s) and inexpensively with a cut-off level of 10 μg mL− 1, which is the value that the International Organization has laid down in its assessment of the water quality for human consumption. The reliability of the screening test was 23% false positives and 0% false negatives in 30 samples. The applicability was confirmed by analyzing mineral, tap and river water samples.  相似文献   

10.
An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was optimized. The accuracy and selectivity of the MISPE process developed were verified using a non-imprinted (blank) polymer and a classical ENVI-18 cartridge as the SPE matrix during control experiments. The use of MISPE improved the accuracy and precision of the GC method and lowered the limit of detection. The recoveries of four polar organophosphorus pesticides (OPPs) extracted from 1 L of river water at a 100 ng/L spike level were in the range of 77.5-99.1%. The recoveries of organophosphorus pesticides extracted from a 5-g soil sample at the 100 microg/kg level were in the range of 79.3-93.5%. The limit of detection varied from 10 to 32 ng/L in water and from 12 to 34 microg/kg in soil samples. The molecularly imprinted polymer (MIP) enabled the selective extraction of four organophosphorus pesticides successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

11.
合成了甲福明的分子印迹聚合物,以此聚合物为识别物质,在线分离富集甲福明,建立了一种测定甲福明的流动式化学发光但感器。N-溴代丁二酰亚胺(NBS)和荧光素与甲福明发生化学反应,产生强的化学发光。甲福明质量浓度在2×10-8~8×10-6g/mL范围内同发光强度成良好线性关系,方法的检出限为6×10-9g/mL,相对标准偏差小于5%(n=9)。选择性实验表明将分子印迹聚合物作为识别物质应用于化学发光分析中,能大大提高化学发光分析方法的选择性。该传感器可逆性强、稳定性好,可重复使用100次以上,已用于人体尿样中甲福明的测定。  相似文献   

12.
A new molecularly imprinted polymer (MIP) for trace analysis of diclofenac in environmental water samples was prepared by a non-covalent protocol in which diclofenac was used as a template molecule. Diclofenac is a member of the class of drugs termed non-steroidal anti-inflammatory drugs (NSAIDs) which belong to the most frequently detected pharmaceuticals in the water-cycle in Europe. The MIP was synthesized using 2-vinylpyridine (2-VP) and ethylene glycol dimethacrylate (EGDMA) as a functional monomer and cross-linker, respectively, and bulk thermal polymerization method. 1H NMR spectroscopy was used to study the interaction between diclofenac and 2-VP mixed in toluene-d8 in pre-polymerization complex. Two non-covalent bonds were formed i.e. ionic interaction and hydrogen bonding. The binding characteristics of the MIP and diclofenac were evaluated using equilibrium binding experiments. Scatchard plot analysis revealed that two classes of binding sites were formed with dissociation constants of 55.6 μmol L−1 and 1.43 mmol L−1, respectively. Various parameters affecting the extraction efficiency of the polymers have been evaluated to achieve the selective preconcentration of diclofenac from aqueous samples and to reduce non-specific interactions. This resulted in an MISPE-LC/DAD method allowing the direct extraction of the analyte from sample matrix with a selective wash using dichloromethane/acetonitrile (94:6, v/v) followed by elution with dichloromethane/methanol (85:15, v/v). The recovery of a 100 ng diclofenac standard spiked into 200 mL of blank surface water was 96%, with good precision (RSD = 3.3%, n = 3). The MISPE was demonstrated to be applicable to the analysis of diclofenac in raw influent and final effluent wastewater samples from sewage treatment plant and revealed diclofenac concentrations of 1.31 ± 0.055 μg L−1 (n = 3) and 1.60 ± 0.049 μg L−1 (n = 3), respectively. Yielded results were in good agreement with the corresponding LC/TIS/MS/MS data obtained by an independent laboratory which were 1.40 and 1.50 μg L−1 for influent and effluent samples.  相似文献   

13.
In this work a parathion selective molecularly imprinted polymer was synthesized and applied as a high selective adsorber material for parathion extraction and determination in aqueous samples. The method was based on the sorption of parathion in the MIP according to simple batch procedure, followed by desorption by using methanol and measurement with square wave voltammetry. Plackett-Burman and Box-Behnken designs were used for optimizing the solid-phase extraction, in order to enhance the recovery percent and improve the pre-concentration factor. By using the screening design, the effect of six various factors on the extraction recovery was investigated. These factors were: pH, stirring rate (rpm), sample volume (V1), eluent volume (V2), organic solvent content of the sample (org%) and extraction time (t). The response surface design was carried out considering three main factors of (V2), (V1) and (org%) which were found to be main effects. The mathematical model for the recovery percent was obtained as a function of the mentioned main effects. Finally the main effects were adjusted according to the defined desirability function. It was found that the recovery percents more than 95% could be easily obtained by using the optimized method. By using the experimental conditions, obtained in the optimization step, the method allowed parathion selective determination in the linear dynamic range of 0.20-467.4 μg L−1, with detection limit of 49.0 ng L−1 and R.S.D. of 5.7% (n = 5). Parathion content of water samples were successfully analyzed when evaluating potentialities of the developed procedure.  相似文献   

14.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

15.
The estrogenic compound diethylstilbestrol (DES) is widely studied because of its potential endocrine disruption effects. The prohibition of the use of diethylstilbestrol as a growth promoter has not been enough to ensure the total disappearance of this compound from environmental matrices. Due to the low levels of DES present in the environment, preconcentration and clean up methods are necessary for its analysis. This paper describes the synthesis and use of a molecularly imprinted polymer (MIP) as sorbent for on-column solid-phase extraction of DES from aqueous samples. The selectivity of the DES-MIP was evaluated towards several selected estrogens such as hexestrol (HEX), estrone (E1), estriol (E3), estradiol (E2) and ethynylestradiol (EE2). HPLC-DAD was used to quantify all analytes at 230-nm wavelength. The method has been successfully applied to the analysis of DES in spiked river and tap water samples, with recoveries of 72% and 83% respectively.  相似文献   

16.
Zhang Z  Tan W  Hu Y  Li G  Zan S 《The Analyst》2012,137(4):968-977
In this study, novel GA3 magnetic molecularly imprinted polymer (mag-MIP) beads were synthesized by a microwave irradiation method, and the beads were applied for the trace analysis of gibberellin acids (GAs) in plant samples including rice and cucumber coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS). The microwave synthetic procedure was optimized in detail. In particular, the interaction between GA3 and functional monomers was further studied for the selection of the optimal functional monomers during synthesis. It can be seen that the interaction between GA3 and acrylamide (AM) finally selected was stronger than that between GA3 and other functional monomers. GA3 mag-MIP beads were characterized by a series of physical tests. GA3 mag-MIP beads had a porous and homogeneous surface morphology with stable chemical, thermal and magnetic properties. Moreover, GA3 mag-MIP beads demonstrated selective and specific absorption behavior for the target compounds during unsaturated extraction, which resulted in a higher extraction capacity (~708.4 pmol for GA3) and selectivity than GA3 mag-non-imprinted polymer beads. Finally, an analytical method of GA3 mag-AM-MIP bead extraction coupled with HPLC-MS detection was established and applied for the determination of trace GA1, GA3, GA4 and GA7 in rice and cucumber samples. It was satisfactory that GA4 could be actually found to be 121.5 ± 1.4 μg kg(-1) in real rice samples by this novel analytical method. The recoveries of spiked rice and cucumber samples were found to be 76.0-109.1% and 79.9-93.6% with RSDs of 2.8-8.8% and 3.1-7.7% (n = 3), respectively. The proposed method is efficient and applicable for the trace analysis of GAs in complicated plant samples.  相似文献   

17.
苏立强  李继姣  高源 《化学通报》2016,79(4):349-354
以接枝双键的凹凸棒土(TM)为载体,槲皮素为模板分子,采用表面印迹技术制备对槲皮素具有特异吸附性能的分子印迹聚合物(MIP)。利用光谱法选择实验条件及对化合物表征。采用静态法研究聚合物对槲皮素的结合性能与识别性能。结果表明,该分子印迹材料对槲皮素具有特异的识别特性和优良的亲和性,提高了传统聚合物的结合率。以该印迹聚合物为固相萃取材料,结合高效液相色谱法,对白菜中的槲皮素进行分离富集,方法回收率为84.0%~90.6%,相对标准偏差低于5.6%。  相似文献   

18.
以(S) 酮洛芬为印迹分子利用分子印迹技术合成能识别(S) 酮洛芬的聚合物。聚合物作为高效液相色谱的固定相,消旋体酮洛芬在固定相能分开,同时聚合物还能将酮洛芬和布洛芬的混合物分开。  相似文献   

19.
In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol.  相似文献   

20.
A novel potentiometric sensor based on molecularly imprinted polymer (MIP) for propranolol, an adrenergic-blocking drug, was designed. The influence of molecularly imprinted polymer particle content and sodium tetraphenylborate additives in polyvinylchloride membrane was shown. The electrodes show near-Nernstian responses down to 10?4–10?5?M propranolol concentration. The potentiometric response of MIP-based sensor for propranolol in mixed nonaqueous medium was shown at first. Sensor selectivity relative to various inorganic cations, atenolol and metoprolol, was reported. Direct potentiometry was used to determine propranolol in aqueous modeling solutions and pharmaceutical preparations with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号